首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the course of screening Bacillus species from food and water in Norway, we isolated a strain of Bacillus sphaericus of DNA homology group V, not previously recognized to contain entomopathogenic strains, that was cytotoxic to Vero cell epithelia. Peptide mass fingerprinting of a protein purified from the culture supernatant of B. sphaericus B354 identified a cholesterol-dependent cytolysin (CDC) with high amino acid sequence identity with sphaericolysin, a CDC identified recently in B. sphaericus DNA homology group IIA. The toxin was haemolytic against erythrocytes from a range of species. Haemolysis was potentiated by dithiothreitol and inhibited by preincubation with cholesterol. The toxin induced lactate dehydrogenase release from Vero cells and formed pores in planar lipid bilayers. The distribution of CDC genes in B. sphaericus was examined, with CDC gene products obtained in 13 out of 17 strains representing four of the six DNA homology groups. Thus, we demonstrate the presence of a CDC in a nonentomopathogenic DNA homology group of B. sphaericus (group V) with typical CDC characteristics. CDCs appear to be present in a high proportion of B. sphaericus strains and are not restricted to group IIA insecticidal strains.  相似文献   

2.
A new gene encoding a 35.8-kDa mosquitocidal toxin (Mtx3; 326 amino acids) was isolated from Bacillus sphaericus SSII-1 DNA. Mtx3 is a new type of mosquitocidal toxin with homology to the Mtx2 mosquitocidal toxin of B. sphaericus SSII-1, the epsilon-toxin of Clostridium perfringens, and the cytotoxin of Pseudomonas aeruginosa. The mtx3 gene is highly conserved and widely distributed in both high- and low-toxicity mosquito larvicidal strains of B. sphaericus.  相似文献   

3.
The expression of the 100-kDa mosquitocidal toxin (Mtx) during vegetative growth and sporulation in nine different mosquito-larvicidal strains of Bacillus sphaericus has been analyzed. In five out of the nine strains the 100-kDa toxin was found to be expressed predominantly in the vegetative phase of growth, and in all nine strains the level of the toxin in sporulated cells was very low or undetectable. Strains in four out of the six DNA homology groups of B. sphaericus produced intracellular and extracellular proteases, which degraded the 100-kDa toxin, during sporulation. The 100-kDa toxin gene was expressed by using its native promoter on a multicopy number plasmid in B. sphaericus 1693 (protease negative) and B. sphaericus 13052 (protease positive). High levels of the 100-kDa toxin were produced in vegetative cells of both strains as well as in sporulated cells of protease-negative strain 1693, which is in contrast to the low levels of the 100-kDa toxin produced in sporulated cells of protease-positive strain 13052. Thus, the small amount of the 100-kDa toxin in sporulated cells of the nine mosquito-larvicidal strains is probably due to degradation of the 100-kDa toxin synthesized during vegetative growth by a protease(s) produced during sporulation. B. sphaericus 1693 transformed with the 100-kDa toxin gene was as toxic to mosquito larvae during both vegetative growth and sporulation as the natural high-toxicity strains of sporulated B. sphaericus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

5.
Three selective media for the isolation of Bacillus sphaericus have been compared. BATS medium and a formulation employing adenosine as the principal carbon source were the most effective for the recovery of spores of strain 1593. Anthranilic acid as the principal carbon source was less efficient. Eighty-four strains were isolated from mud samples using these media and were identified by computer. Identifications were confirmed for representative strains using DNA sequence homology. Most were B. sphaericus sensu stricto or members of an unnamed group. However, one strain (BSE 18) was identified as the DNA homology group IIB and this organism was found to be highly toxic toward larvae of Culex pipiens. Southern hybridization of BSE 18 DNA to a probe prepared from the cloned toxin gene from strain 1593 revealed that BSE 18 contained a typical gene for the 41.9-kDa toxin.  相似文献   

6.
Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin from B. sphaericus in the recipient strain. The Bacillus thuringiensis subsp. israelensis cry11Aal gene (referred to as cry11A), encoding a delta-endotoxin with toxicity against Culex, Aedes, and Anopheles larvae, was integrated either by a single crossover event [strain 2297 (::pHT5601), harboring the entire recombinant plasmid] or by two successive crossover events [strain 2297 (::cry11A)]. The level of the Cry11A production in B. sphaericus was high; two crystalline inclusions were produced in strain 2297 (::pHT5601). Synthesis of the Cry11A toxin conferred toxicity to the recombinant strains against Aedes aegypti larvae, for which the parental strain was not toxic. Interestingly, the level of larvicidal activity of strain 2297 (::pHT5601) against Anopheles stephensi was as high as that of B. thuringiensis subsp. israelensis and suggested synergy between the B. thuringiensis and B. sphaericus toxins. The toxicities of parental and recombinant B. sphaericus strains against Culex quinquefasciatus were similar, but the recombinant strains killed the larvae more rapidly. The production of the Cry11A toxin in B. sphaericus also partially restored toxicity for C. quinquefasciatus larvae from a population resistant to B. sphaericus 1593. In vivo recombination therefore appears to be a promising approach to the creation of new B. sphaericus strains for vector control.  相似文献   

7.
[目的]球形芽孢杆菌缺乏EMP、HMP、ED途径的关键酶,如磷酸果糖激酶等被认为是其不能以糖类物质进行生长的主要原因.杀蚊球形芽孢杆菌C3-41全基因组序列分析表明,在染色体DNA上存在的磷酸果糖激酶基因pfk,为了进一步分析球形芽孢杆菌糖酵解途径,进一步确定磷酸果糖激酶在糖酵解途径中的功能.[方法]通过pfk基因在球形芽孢杆菌菌株中的Southern-blot拷贝数鉴定,在C3-41pfk基因克隆的基础上进行pfk基因在大肠杆菌中的融合表达、序列分析和序列比对等方法进行研究.[结果]证明了球形芽孢杆菌pfk基因由960 bp核苷酸组成,表达42 kDa的PFK融合蛋白,有保守的底物结合域和ATP结合域,同时pfk基因重组表达质粒可以回复大肠杆菌pfk缺陷型菌株DFl020代谢糖的能力.[结论]杀蚊球形芽孢杆菌C3-41的pfk表达产物具有磷酸果糖激酶活性,为今后深入研究球形芽孢杆菌产能代谢机理奠定了基础.  相似文献   

8.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

9.
The genetic diversity of 35 Bacillus sphaericus strains was analyzed by a newly developed multilocus sequence typing (MLST) scheme, toxin gene pool survey, and mosquito bioassay. The results demonstrated that strains assigned to the same sequence type (ST) had the same occurrence of toxin genes. Further sequence analysis revealed that toxic strains presented a nearly clonal population structure, whereas nontoxic strains had a high level of heterogeneity and were significantly distinct from toxic strains.  相似文献   

10.
A cosmid library was prepared from a partial BamHI digest of total DNA from Bacillus sphaericus SSII-1. Two hundred fifty Escherichia coli clones were screened for toxicity against larvae of the mosquito Culex quinquefasciatus. One toxic clone, designated pKF2, was chosen for further study. Two toxic subclones, designated pXP33 and pXP34, obtained by ligating PstI-derived fragments of pKF2 into pUC18, contained the same 3.8-kb fragment, but in opposite orientations. Sequence analysis revealed the presence of an open reading frame corresponding to a 100-kDa protein and the 3' end of a further open reading frame having significant homology to open reading frames of transposons Tn501 and Tn21. The sequence of the SSII-1 toxin was compared with those of known toxins and was found to show regional homology to those of ADP-ribosyltransferase toxins. The distribution of the toxin gene among other B. sphaericus strains was examined.  相似文献   

11.
Five new high-toxicity mosquitocidal strains of Bacillus sphaericus were isolated in Singapore. They all belong to phage group 8 and have binary toxin (51.4- plus 41.9-kDa) genes located on the chromosome but lack a 100-kDa-toxin gene. These strains of B. sphaericus constitute a new subgroup, as only two weakly toxic strains in phage group 8 have previously been described and all the known high-toxicity strains have both binary toxin and 100-kDa-toxin genes.  相似文献   

12.
Bacillus sphaericus cannot metabolize sugar since it lacks several of the enzymes necessary for glycolysis. Our results confirmed the presence of a glucokinase-encoding gene, glcK, and a phosphofructokinase-encoding gene, pfk, on the bacterial chromosome and expression of glucokinase during vegetative growth of B. sphaericus strains. However, no phosphoglucose isomerase gene (pgi) or phosphoglucose isomerase enzyme activity was detected in these strains. Furthermore, one glcK open reading frame was cloned from B. sphaericus strain C3-41 and then expressed in Escherichia coli. Biochemical analysis revealed that this gene encoded a protein with a molecular mass of 33 kDa and that the purified recombinant glucokinase had K(m) values of 0.52 and 0.31 mM for ATP and glucose, respectively. It has been proved that this ATP-dependent glucokinase can also phosphorylate fructose and mannose, and sequence alignment of the glcK gene indicated that it belongs to the ROK protein family. It is postulated that the absence of the phosphoglucose isomerase-encoding gene pgi in B. sphaericus might be one of the reasons for the inability of this bacterium to metabolize carbohydrates. Our findings provide additional data that further elucidate the specific metabolic pathway and could be used for genetic improvement of B. sphaericus.  相似文献   

13.
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.  相似文献   

14.
Using the vector pGEM-4-blue, a 4,251-base-pair DNA fragment containing the gene for the surface (S)-layer protein of Bacillus sphaericus 2362 was cloned into Escherichia coli. Determination of the nucleotide sequence indicated an open reading frame (ORF) coding for a protein of 1,176 amino acids with a molecular size of 125 kilodaltons (kDa). A protein of this size which reacted with antibody to the 122-kDa S-layer protein of B. sphaericus was detected in cells of E. coli containing the recombinant plasmid. Analysis of the deduced amino acid sequence indicated a highly hydrophobic N-terminal region which had the characteristics of a leader peptide. The first amino acid of the N-terminal sequence of the 122-kDa S-layer protein followed the predicted cleavage site of the leader peptide in the 125-kDa protein. A sequence characteristic of promoters expressed during vegetative growth was found within a 177-base-pair region upstream from the ORF coding for the 125-kDa protein. This putative promoter may account for the expression of this gene during the vegetative growth of B. sphaericus and E. coli. The gene for the 125-kDa protein was followed by an inverted repeat characteristic of terminators. Downstream from this gene (11.2 kilobases) was an ORF coding for a putative 80-kDa protein having a high sequence similarity to the 125-kDa protein. Evidence was presented indicating that this gene is cryptic.  相似文献   

15.
The DNA encoding the exfoliative toxin A gene (eta) of Staphylococcus aureus was cloned into bacteriophage lambda gt11 and subsequently into plasmid pLI50 on a 1,391-base-pair DNA fragment of the chromosome. Exfoliative toxin A is expressed in the Escherichia coli genetic background, is similar in length to the toxin purified from culture medium, and is biologically active in an animal assay. The nucleotide sequence of the DNA fragment containing the gene was determined. The protein deduced from the nucleotide sequence is a polypeptide of 280 amino acids. The mature protein is 242 amino acids. The DNA sequence of the exfoliative toxin B gene was also determined. Corrections indicate that the amino acid sequence of exfoliative toxin B is in accord with chemical sequence data.  相似文献   

16.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

17.
Larvicidal proteins of B. sphaericus H5a5b (strain VCRC B42), purified by ion-exchange chromatography were used to raise antibodies in rabbits. The antibodies were specific in reacting to alkali-solubilized fractions from whole cells of toxic strains only. Ouchterlony immunodiffusion showed homology in toxin structure between strains of different serotype. A sandwich ELISA using avidin-biotin amplification was standardized. The lowest detectable limit was 6.25 ng/ml. Near linear quantitative binding of the antigen was found in the range 25-200 ng/ml. The growth, toxin level and LC50 values during various stages of fermentation of B. sphaericus strains 1593 and B42 were compared. There was significant correlation between LC50 values and toxin levels as measured by ELISA.  相似文献   

18.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C3-41总DNA中3.5KbHindIII片段上带有41.9和51.4kD二元毒素基因。  相似文献   

19.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C\-3\|41总DNA中35Kb HindIII片段上带有419和514kD二元毒素基因,该片段由3479个核苷酸组成,核苷酸序列同2362菌株的二元毒素基因序列完全相同。含二元毒素基因的重组质粒pCW\|1和pCW\|2能在大肠杆菌中表达产生二元毒蛋白,但表达量低,重组子杀蚊毒性低。无晶体型苏云金芽孢杆菌以色列亚种重组子在其芽孢形成中能产生以晶体形式存在的二元毒素蛋白,其全发酵液和纯化晶体蛋白的杀蚊活性与C\-3\|41相近。  相似文献   

20.
The ermG gene was first found in the soil bacterium Bacillus sphaericus. More recently, it was found in several human intestinal Bacteroides species. We report here the first finding of ermG genes in gram-positive bacteria isolated from porcine feces and from under-barn manure pits used to store porcine wastes. The porcine ermG sequences were identical to the sequence of the B. sphaericus ermG gene except that six of the seven ermG-containing strains contained an insertion sequence element insertion in the C-terminal end of the gene. The porcine ermG genes were found in three different gram-positive genera, an indication that it is possible that the gene is being spread by horizontal gene transfer. A segment of a Bacteroides conjugative transposon that carries an ermG gene cross-hybridized with DNA from six of the seven porcine isolates, but the restriction patterns in the porcine strains were different from that of the Bacteroides conjugative transposon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号