首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

2.
Genomic in situ hybridization (GISH) offers a convenient and effective method for cytological detection, but can not determine the identity of the chromosomes involved. We integrated C-banding with GISH to identify Haynaldia villosa chromosomes in a wheat background. All chromosomes of H. villosa showed C-bands, either in telomeric regions or in both telomeric and centromeric regions, which allowed unequivocal identification of each H. villosa chromosome. The seven pairs of H. villosa chromosomes were differentiated as 1–7 according to their characteristic C-bands. Using a sequential C-banding and GISH technique, we have analyzed somatic cells of F3 plants from the amphiploid Triticum aestivum-H. villosa x Yangmai 158 hybrids. Three plants (94009/5-4,94009/5-8 and 94009/5-9) were shown to contain H. villosa chromosome(s). 94009/5-4 (2n = 45) had three H. villosa chromosomes (2, 3 and 4); 94009/5-8 (2n = 45) possessed one chromosome 4 and a pair of chromosome 5, and 94009/5-9 (2n = 43) was found to have one chromosome 6 of H. villosa. The combination of GISH with C-banding described here provides a direct comparison of the cytological and molecular landmarks. Such a technique is particularly useful for identifying and localizing alien chromatin and DNA sequences in plants.  相似文献   

3.
4.
A Yoshido  K Sahara  F Marec  Y Matsuda 《Heredity》2011,106(4):614-624
Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation.  相似文献   

5.
F Marec  W Traut 《Génome》1994,37(3):426-435
Structure and pairing behavior of sex chromosomes in females of four T(W;Z) lines of the Mediterranean flour moth, Ephestia kuehniella, were investigated using light and electron microscopic techniques and compared with the wild type. In light microscopic preparations of pachytene oocytes of wild-type females, the WZ bivalent stands out by its heterochromatic W chromosome strand. In T(W;Z) females, the part of the Z chromosome that was translated onto the W chromosome was demonstrated as a distal segment of the neo-W chromosome, displaying a characteristic non-W chromosomal chromomere-interchromomere pattern. This segment is homologously paired with the corresponding part of a complete Z chromosome. In contrast with the single ball of heterochromatic W chromatin in highly polyploid somatic nuclei of wild-type females, the translocation causes the formation of deformed or fragmented W chromatin bodies, probably owing to opposing tendencies of the Z and W chromosomal parts of the neo-W. In electron microscopic preparations of microspread nuclei, sex chromosome bivalents were identified by the remnants of electron-dense heterochromatin tangles decorating the W chromosome axis, by the different lengths of the Z and W chromosome axes, and by incomplete pairing. No heterochromatin tangles were attached to the translocated segment of the Z chromosome at one end of the neo-W chromosome. Because of the homologous pairing between the translocation and the structurally normal Z chromosome, pairing affinity of sex chromosomes in T(W;Z) females is significantly improved. Specific differences observed among T(W;Z)1-4 translocations are probably due to the different lengths of the translocated segments.  相似文献   

6.
Comparative genomic hybridization (CGH) was used to identify and probe sex chromosomes in several XY and WZ systems. Chromosomes were hybridized simultaneously with FluorX-labelled DNA of females and Cy3-labelled DNA of males in the presence of an excess of Cot-1 DNA or unlabelled DNA of the homogametic sex. CGH visualized the molecular differentiation of the X and Y in the house mouse, Mus musculus, and in Drosophila melanogaster: while autosomes were stained equally by both probes, the X and Y chromosomes were stained preferentially by the female-derived or the male-derived probe, respectively. There was no differential staining of the X and Y chromosomes in the fly Megaselia scalaris, indicating an early stage of sex chromosome differentiation in this species. In the human and the house mouse, labelled DNA of males in the presence of unlabelled DNA of females was sufficient to highlight Y chromosomes in mitosis and interphase. In WZ sex chromosome systems, the silkworm Bombyx mori, the flour moth Ephestia kuehniella, and the wax moth Galleria mellonella, the W chromosomes were identified by CGH in mitosis and meiosis. They were conspicuously stained by both female- and male-derived probes, unlike the Z chromosomes, which were preferentially stained by the male-derived probe in E. kuehniella only but were otherwise inconspicuous. The ratio of female:male staining and the pattern of staining along the W chromosomes was species specific. CGH shows that W chromosomes in these species are molecularly well differentiated from the Z chromosomes. The conspicuous binding of the male-derived probe to the W chromosomes is presumably due to an accumulation of common interspersed repetitive sequences. Received: 6 January 1999; in revised form: 28 January 1999 / Accepted: 11 February 1999  相似文献   

7.
Multicolor genomic in situ hybridization (McGISH) was applied to identify the genomic constitution of three tetraploid species (2n = 4x = 48) in the Oryza officinalis complex of the genus Oryza, i.e. Oryza malam-puzhaensis, Oryza minuta, and Oryza punctata. The genomic probes used were from three diploids, i.e. Oryza officinalis (CC), Oryza eichingeri (CC) and Oryza punctata (BB), respectively. The results indicated that all three tetraploids are allotetraploid with the genomic constitution of BBCC, and among them the genome constitution of O. malampuzhaensis was verified for the first time. Restoration of the independent taxonomic status of O. malampuzhaensis is suggested. One pair of satellite chromosomes belonging to the B genome was identified in O. malampuzhaensis, but no such satellite chromosomes were found in either O. minuta or the tetraploid O. punctata. The average chromosome length of the C genome was found to be slightly larger than that of the B-genome chromosomes of O. minuta, but not in the tetraploids O. punctata and O. malampuzhaensis. McGISH also revealed that the B genome of O. minuta and the B genome of diploid O. punctata showed clear differentiation from each other. Therefore, the suggestion was proposed that the B genome in diploid O. punctata was not the source of the B genome of O. minuta. The present results proved that multicolor GISH had high resolution in identifying the genomic constitution of polyploid Oryza species. Received: 14 February 2000 / Accepted: 13 November 2000  相似文献   

8.
Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long‐tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced‐representation genomic sequencing for 293 individuals over a 1,530‐km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.  相似文献   

9.
We isolated four W chromosome-derived bacterial artificial chromosome (W-BAC) clones from Bombyx mori BAC libraries by the polymerase chain reaction and used them as probes for fluorescence in situ hybridization (FISH) on chromosome preparations from B. mori females. All four W-BAC probes surprisingly highlighted the whole wild-type W sex chromosome and also identified the entire original W-chromosomal region in W chromosome-autosome translocation mutants. This is the first successful identification of a single chromosome by means of BAC-FISH in species with holokinetic chromosomes. Genomic in situ hybridization (GISH) by using female-derived genomic probes highlighted the W chromosome in a similar chromosome-painting manner. Besides the W, hybridization signals of W-BAC probes also occurred in telomeric and/or subtelomeric regions of the autosomes. These signals coincided well with those of female genomic probes except one additional GISH signal that was observed in a large heterochromatin block of one autosome pair. Our results support the opinion that the B. mori W chromosome accumulated transposable elements and other repetitive sequences that also occur, but scattered, elsewhere in the respective genome. Edited by: E.R. Schmidt  相似文献   

10.
The wheat-Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai-2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridization (GISH) was used to analyze the chromosome constitution of Z1,Z2 by using genomic DNA probes from Th. intermedium and Pseudoroegneria strigosa. The results showed that the chromosome constitution of either Z1 or Z2 composes of 42 wheat chromosomes and two Th. intermedium chromosomes (2Ai-2). The 2Ai-2 chromosome is St-E intercalary translocation, in which the E genomic chromosome segment translocated into the middle region of the long arm of chromosome belonging to St genome. With the genomic DNA probe of Ps. strigosa, the GISH pattern specific to the 2Ai-2 chromosome may be used as a molecular cytogenetic marker. A detailed RFLP analysis on Z1, Z2 and their parents was carried out by using 12 probes on the wheat group 2 chromosomes. Twenty RFLP markers specific to the 2Ai-2 chromosome were identified. Two RAPD markers of OPR16 –350 and OPH09 -1580, specific to the 2Ai-2 chromosome, were identified from 280 RAPD primers. These molecular markers could be used to assisted-select translocation lines with small segment of the 2Ai-2 chromosome and provide tools to localize the BYDV resistance.  相似文献   

11.
Eleusine coracana, commonly called finger millet, is an important cereal of semi-arid regions, cultivated in parts of Africa and India for its grain. It is reported to be an allotetraploid with a chromosome number 2n = 4x = 36, and diploid species E. indica, with chromosome number 2n = 2x = 18, is considered to be one of its genome donors. In situ hybridization of the E. coracana genome with the genomic DNA of various diploid species of the genus confirmed that E. indica is one of the genome donors to E. coracana and that E. floccifolia is another genome contributor to this allotetraploid species. In situ hybridization also showed a close genomic relationship between 4 diploid species, E. indica, E. floccifolia, E. tristachya and E. intermedia, and also between these and tetraploid species E. coracana. The common genomic in situ hybridization (GISH) signals of the genomic DNA of E. indica and E. tristachya on 15–18 chromosomes of E. coracana clearly indicated that these 2 species have a close genomic similarity. GISH on 25–27 chromosomes of E. coracana withthe genomic DNA of E. intermedia and cross in situ hybridization signals on the chromosomes of E. coracana with genomic DNA of E. intermedia and E. indica or E. intermedia and E. floccifolia has showed that E. intermedia may be an intermediate species of E. indica and E. floccifolia. Received: 15 May 2000 / Accepted: 4 September 2000  相似文献   

12.
In a previous study, we developed cytoplasmic male sterile lines of Allium fistulosum possessing the cytoplasm of A. galanthum, a wild species, by continuous backcrossing. Furthermore, we reported the presence of a pollen fertility-restoring gene (Rf) for cytoplasmic male sterility (CMS) in A. fistulosum from segregation of pollen fertility of backcross progenies. In the present study, genomic in situ hybridization (GISH), using genomic DNA of A. galanthum as the probe DNA and that of A. fistulosum as the blocking DNA, was applied to F1 hybrids between both species and backcross progenies to determine the chromosomal location of the Rf locus. By means of GISH, eight chromosomes from A. galanthum were clearly discriminated from those of A. fistulosum in the F1 hybrids, and chromosome substitution process through continuous backcrossing was visualized. Interestingly, the chromosome region from A. galanthum, specific to male fertile plants, was detected in one chromosome of BC4 to BC7 generations. Based on the karyotype analysis of the male fertile plants, the chromosome was identified as the 5F chromosome. Our results confirm that the Rf locus is located on the 5F chromosome of the male fertile plants. This is the first report that identified the chromosomal location of the pollen fertility-restoring gene in A. fistulosum.  相似文献   

13.
Ueno K  Ota K  Kobayashi T 《Genetica》2001,111(1-3):133-142
The karyotype and DNA content of four lizardfish species (family Synodontidae), that is, Saurida elongata, Synodus ulae, Synodus hoshinonis and Trachinocephalus myops, were analyzed. The karyotype of T. myops significantly differed from that of the other three species having diploid chromosome number of 48 with mainly acrocentric chromosomes and the ZZ-ZW sex chromosome system. The chromosome number of male T. myops was 2n=26, while that of female T. myops was 2n=27. The karyotype consisted of 11 pairs of metacentrics, one pair of acrocentrics and, in addition, two large metacentrics in the male and a single large metacentric, a distinctly small subtelocentric and a microchromosome in the female. C-banding demonstrated that in the female the subtelocentric chromosome and the microchromosome were heterochromatic. The karyotype of T. myops was thought to be derived from a 48 chromosome type synodontid fish through the involvement of Robertsonian rearrangement; the rearrangement of the sex chromosomes proceeded during karyotype evolution. Among the chromosomes, the large metacentrics were determined to be neo-Z (a fusion of the original Z and an autosome), the microchromosomes the W1 (originally W), and the subtelocentric chromosomes the W2 (derived from an autosome pair). The miniaturization of W1 and W2 chromosomes and their heterochromatinization suggested that sex chromosomes in this species have been already highly differentiated. The findings on DNA content implied that the karyotype of T. myops evolved by centric fusion events without loss in DNA amount.  相似文献   

14.
Males are homogametic (ZZ) and females are heterogametic (WZ) with respect to the sex chromosomes in many species of butterflies and moths (insect order Lepidoptera). Genes on the Z chromosome influence traits involved in larval development, environmental adaptation, and reproductive isolation. To facilitate the investigation of these traits across Lepidoptera, we developed 43 degenerate primer pairs to PCR amplify orthologs of 43 Bombyx mori Z chromosome-linked genes. Of the 34 orthologs that amplified by PCR in Ostrinia nubilalis, 6 co-segregated with the Z chromosome anchor markers kettin (ket) and lactate dehydrogenase (ldh), and produced a consensus genetic linkage map of ~89 cM in combination with 5 AFLP markers. The O. nubilalis and B. mori Z chromosomes are comparatively co-linear, although potential gene inversions alter terminal gene orders and a translocation event disrupted synteny at one chromosome end. Compared to B. mori orthologs, O. nubilalis Z chromosome-linked genes showed conservation of tissue-specific and growth-stage-specific expression, although some genes exhibited species-specific expression across developmental stages or tissues. The O. nubilalis Z chromosome linkage map provides new tools for isolating quantitative trait loci (QTL) involved in sex-linked traits that drive speciation and it exposes genome rearrangements as a possible mechanism for differential gene regulation in Lepidoptera.  相似文献   

15.
To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea×A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes. Received: 7 October 1998; in revised form: 4 December 1998 / Accepted: 10 December 1998  相似文献   

16.
Karyotypes of several subspecies of black rats, Rattus rattus, collected in different localities of Asia and Oceania were examined with special emphasis on the relationship between the chromosome polymorphism and differentiation of the subspecies. Subspecies of black rats (R. rattus) collected were as follows; tanezumi from Japan; flavipectus and sladeni from Hong Kong; diardii, jalorensis from Kuala Lumpur, Malaysia; argentiventer from Kuala Lumpur, and Java and Celebes, Indonesia; mindanensis from Luzon and Mindanao, Philippines; and rattus from Australia, New Zealand, and New Guinea. Subspecies in Formosa, Korea and Thailand were not determined. All black rats collected in the above Asian districts had 42 diploid chromosomes, while those in Oceania had 38. The rats collected in Japan (tanezumi), Korea, Formosa, Thailand and Malaysia (diardii) had A/A No. 1 pair or polymorphic No. 1 (A/A, A/S and S/S) pairs, while those collected in Java and Celebes (argentiventer), Luzon and Mindanao (mindanensis) showed a higher frequency of S/S No. 1 pair. From the higher occurrence of No. 1 A/A pair of black rats in the Asian continent where the black rats originated, it is suggested that the original type of No. 1 chromosome pair of the black rats is A/A, and a pericentric inversion occurred in the acrocentric No. 1 chromosome and thus rats with subtelocentric No. 1 pair formed.—Black rats with 38 chromosomes were observed in Australia, New Guinea and New Zealand. These karyotypes seem to have developed by Robertsonian fusion of 4 acrocentric pairs (No. 4 and 7, and No. 11 and 12) in black rats of the Asian type. A relationship between body size and chromosome constitution was observed in subspecies of the black rats.Contribution No. 831 from the National Institute of Genetics, Japan. Supported by a grant-in-aid from the Ministry of Education of Japan (Scientific Expedition in 1968, No. 8801 in 1969, and No. 9001 in 1970).  相似文献   

17.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

18.
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.  相似文献   

19.
The karyotype and genomic in situ hybridization (GISH) of an intergeneric hybrid Baemoochae, ×Brassicoraphanus, which originated from hybridization between Chinese cabbage, Brassica campestris (synonym, rapa) ssp. pekinensis, and radish, Raphanus sativus, were analyzed to determine its chromosome complement. In the karyotype analysis, B. campestris was verified to have 2n = 20 chromosomes, including a particular pair of the subtelomeric chromosomes with the nucleolar organizer; R. sativus to have 2n = 18 chromosomes, including a particular pair of the submetacentric chromosomes with the secondary constriction of nucleolar organizer; and ×Brassicoraphanus to have 2n = 38 chromosomes, including both the subtelomeric chromosomes of Brassica and the secondary constriction chromosome pair of Raphanus. These findings indicate that ×Brassicoraphanus is a polyploid between Brassica and Raphanus. In the GISH analysis using chromosomes of B. campestris and R. sativus as the probe and blocking DNA, respectively, only 20 chromosomes of Brassica had hybridization signals. This result reveals that ×Brassicoraphanus is an intergeneric hybrid consisting of the complete genomes of both Brassica and Raphanus. However, the nucleolar organizers of Brassica and Raphanus were not identified because the hybridization signals appeared to be centering mainly around the centromere, becoming weak at the edges.  相似文献   

20.
 The most important commercial coffee species, Coffea arabica, which is cultivated in about 70% of the plantations world-wide, is the only tetraploid (2n=4x=44) species known in the genus. Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) were used to study the genome organization and evolution of this species. Labelled total genomic DNA from diploid species (C. eugenioides, C. congensis, C. canephora, C. liberica) closely related to C. arabica was separately used as a probe in combination with or without blocking DNA to the chromosome spreads of C. arabica. GISH discriminated between chromosomes of C. arabica only in the presence of an excess of unlabelled block DNA from the species not used as a probe. Among the range of different species combinations used, DNA from C. eugenioides strongly and preferentially labelled 22 chromosomes of the tetraploid C. arabica, while the remaining 22 chromosomes were labelled with C. congensis DNA. The similarity of observations between C. arabica and the two diploid species using two ribosomal genes with FISH with respect to metaphase chromosomes provided additional support to the GISH results. These results confirm the allopolyploid nature of C. arabica and show that C. congensis and C. eugenioides are the diploid progenitors of C. arabica. Received: 2 February 1998 / Accepted: 12 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号