首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodendrocyte precursor cells (OPCs) are most susceptible to oxidative stress in the brain. However, the cause of differences in susceptibility to oxidative stress between OPCs and mature oligodendrocytes (mOLs) remains unclear. Recently, we identified in vivo that αB-crystallin (aBC) is expressed in mOLs but not in OPCs. Therefore, we examined in the present study whether aBC expression could affect cell survival under oxidative stress induced by hydrogen peroxide using primary cultures of OPCs and mOLs from neonatal rat brains. Expression of aBC was greater in mOLs than in OPCs, and the survival rate of mOLs was significantly higher than that of OPCs under oxidative stress. Suppression of aBC by siRNA transfection resulted in a decrease in the survival rate of mOLs under oxidative stress. These data suggest that higher susceptibility of OPCs than mOLs to oxidative stress is due, at least in part, to low levels of aBC expression. [BMB Reports 2013; 46(10): 501-506]  相似文献   

2.
This study aimed to reveal the pathophysiological signalling responsible for radiation-induced sensitization of hepatocytes to TNF-α-mediated apoptosis. IκB was upregulated in irradiated hepatocytes. Administration of IκB antisense oligonucleotides prior to irradiation inhibited occurrence of apoptosis after TNF-α administration. Caspases-8, -9 and -3 activities were increased in irradiated hepatocytes and downregulation of apoptosis by IκB antisense oligonucleotides was mediated by suppression of caspases-9 and -3 activation but not of caspase-8 activation, suggesting that radiation-induced sensitization of hepatocytes to TNF-α-mediated apoptosis additionally requires changes upstream of caspase-8 activation. Herein, upregulation of FLIP may play a crucial role. Cleavage of bid, upregulation of bax, downregulation of bcl-2 and release of cytochrome c after TNF-α-administration depend on radiation-induced upregulation of IκB, thus demonstrating an apoptosis permitting effect of IκB. H. Gürleyen and H. Christiansen contributed equally to this work.  相似文献   

3.
4.
Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells.  相似文献   

5.
6.
The senescent endothelial cells show various phenotypes which can increase the incidence of inflammatory cardiovascular diseases, but the fundamental basis for such phenotypic changes of senescing cells remains to be elucidated. This study was undertaken to find transmembrane receptors that might be highly expressed in senescent endothelial cells and play a key role in cell death signal transduction. Comparison of mRNA expression in young and senescent human umbilical vein endothelial cells, using a cDNA microarray method, provided a list of transmembrane receptors including the FAS receptor (tumor necrosis factor receptor superfamily member 6) whose expression levels were significantly increased by cellular senescence. Additional studies focused on FAS demonstrated that a high expression of FAS receptor in senescent endothelial cells is responsible for the susceptibility to apoptotic cell death, as the siRNA-mediated suppression of FAS expression in senescent cells prevented the cell death, and overexpression of exogenous FAS in young cells increased cell death. We also verified that FAS expression level was closely associated with the activation of caspase-3 and caspase-9 involved in apoptosis. The senescence-induced transmembrane receptors including the FAS receptor may provide novel therapeutic targets to prevent cardiovascular diseases.  相似文献   

7.
Folate deficiency has been shown to influence carcinogenesis by creating an imbalance in the base excision repair (BER) pathway, affecting BER homeostasis. The inability to mount a BER response to oxidative stress in a folate-deficient environment results in the accumulation of DNA repair intermediates, i.e., DNA strand breaks. Our data indicate that upregulation of β-pol expression in response to oxidative stress is inhibited by folate deficiency at the level of gene expression. Alteration in the expression of β-pol in a folate-deficient environment is not due to epigenetic changes in the core promoter of the β-pol gene, i.e., the CpG islands within the β-pol promoter remain unmethylated in the presence or absence of folate. However, the promoter analysis studies show a differential binding of regulatory factors to the -36 to -7 region (the folic acid-response region, FARR) within the core promoter of β-pol. Moreover, we observe a tight correlation between the level of binding of regulatory factors with the FARR and inhibition of β-pol expression. Based on these findings, we propose that folate deficiency results in an upregulation/stability of negative regulatory factors interacting with FARR, repressing the upregulation of the β-pol gene in response to oxidative stress.  相似文献   

8.
9.
Virus-induced activation of nuclear factor-kappa B (NF-B) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-B is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-B activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-B regulation, where NF-B activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-B activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-B is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-B also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-B-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-B activation in reovirus-infected cells. Further, inhibition of NF-B activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-B and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis.  相似文献   

10.
Cancer cells exhibit the ability to proliferate indefinitely, but paradoxically, overexpression of cellular oncogenes in primary cells can result in a rapid and irreversible cell cycle arrest known as oncogene-induced senescence (OIS). However, we have shown that constitutive overexpression of the oncogene c-MYC in primary human foreskin fibroblasts results in a population of cells with unlimited lifespan; these immortalized cells are henceforth referred to as iMYC. Here, in order to further elucidate the mechanisms underlying the immortalization process, a gene expression signature of three independently established iMYC cell lines compared to matched early passage c-MYC overexpressing cells was derived. Network analysis of this "iMYC signature" indicated that a large fraction of the down-regulated genes were functionally connected and major nodes centered around the TGFβ, IL-6 and IGF-1 signaling pathways. Here, we focused on the functional validation of the alteration of TGFβ response during c-MYC-mediated immortalization. The results demonstrate loss of sensitivity of iMYC cells to activation of TGFβ signaling upon ligand addition. Furthermore, we show that aberrant regulation of the p27 tumor suppressor protein in iMYC cells is a key event that contributes to loss of response to TGFβ. These findings highlight the potential to reveal key pathways contributing to the self-renewal of cancer cells through functional mining of the unique gene expression signature of cells immortalized by c-MYC.  相似文献   

11.
Huang Y  Yin H  Wang J  Liu Q  Wu C  Chen K 《Gene》2012,498(1):91-95
Previous studies have documented that Fc receptor III A of immunoglobulin G (FcγRIIIA, also named CD16) is involved in the development of coronary heart disease (CHD). However, the mechanism responsible for FcγRIIIA's in contribution to CHD development remains largely unclear. Herein, we investigated the possible role of FcγRIIIA in the development of atherosclerosis. Our results showed that the elevated level of FcγRIIIA on monocytes closely correlated to the adhesive efficiency of human umbilical vein endothelial cells (HUVECs) in vitro. Importantly, we also observed increased population of CD16(+) monocytes and elevated CD16 level on monocytes in ApoE(-/-) mice with characterized atherosclerosis after feeding with high-fat diet for 10weeks. The enhancement of CD16 on monocytes closely correlated to increased content of MMP-9 in aorta and increased inflammatory cytokines in sera. In addition, similar to simvastatin, recombinant human M-CSF represented a robust inhibitory influence on plaque instability and inflammation. Taken together, these data established that FcγRIIIA (CD16)-mediated signaling orchestrated by interaction between monocytes and HUVECs, coupled with inflammatory cytokine stimulation and MMP activation, as a fundamental pathway linked to the development of atherosclerotic formation. Inhibition of FcγRIIIA or its signaling thus might represent a promising approach for the prevention and treatment of CHD.  相似文献   

12.
Coordination between cell populations via prevailing metabolic cues has been noted as a promising approach to connect synthetic devices and drive phenotypic or product outcomes. However, there has been little progress in developing ‘controller cells’ to modulate metabolic cues and guide these systems. In this work, we developed ‘controller cells’ that manipulate the molecular connection between cells by modulating the bacterial signal molecule, autoinducer-2, that is secreted as a quorum sensing (QS) signal by many bacterial species. Specifically, we have engineered Escherichia coli to overexpress components responsible for autoinducer uptake (lsrACDB), phosphorylation (lsrK), and degradation (lsrFG), thereby attenuating cell–cell communication among populations. Further, we developed a simple mathematical model that recapitulates experimental data and characterizes the dynamic balance among the various uptake mechanisms. This study revealed two controller ‘knobs’ that serve to increase AI-2 uptake: overexpression of the AI-2 transporter, LsrACDB, which controls removal of extracellular AI-2, and overexpression of the AI-2 kinase, LsrK, which increases the net uptake rate by limiting secretion of AI-2 back into the extracellular environment. We find that the overexpression of lsrACDBFG results in an extraordinarily high AI-2 uptake rate that is capable of completely silencing QS-mediated gene expression among wild-type cells. We demonstrate utility by modulating naturally occurring processes of chemotaxis and biofilm formation. We envision that ‘controller cells’ that modulate bacterial behavior by manipulating molecular communication, will find use in a variety of applications, particularly those employing natural or synthetic bacterial consortia.  相似文献   

13.
14.
15.
16.
17.
Intraspecific variation of -amylase activity in D. melanogaster and D. immigrans, which is distantly related to D. melanogaster, and interspecific variation of -amylase activity in 18 Drosophila species were examined. The amount of intraspecific variation of -amylase activities measured in terms of coefficient of variation in D. melanogaster and D. immigrans was one-half and one-tenth or less, respectively, of the interspecific variation in 18 Drosophila species. We also surveyed the response patterns of -amylase activity to dietary carbohydrates at the larval and adult stages. The levels of -amylase activity depended on both repression by dietary glucose (glucose repression) and induction by dietary starch (starch induction). In general, our data suggest that glucose repression was conserved among species at both stages while starch induction was mainly observed in larvae, although the degree of the response depended on species. In D. lebanonensis lebanonensis and D. serrata, larvae expressed electrophoretically different -amylase variants (isozymes) from those of adult flies. These results may suggest that the regulatory systems responsible both for the response to environment and developmental expression are different among species in Drosophila. Correspondence to: T. Yamazaki  相似文献   

18.
Local anesthetics inhibit cell proliferation and induce apoptosis in various cell types. Ropivacaine, a unique, novel tertiary amine-type anesthetic, was shown to inhibit the proliferation of several cell types including keratinocytes. We found that Ropivacaine could inhibit the proliferation and induce apoptosis in an immortalized human keratinocyte line,HaCaT, in a dose- and time-dependent manner and with the deprivation of serum. The dose-dependent induction of apoptosis by ropivacaine was demonstrated by DNA fragmentation analysis and the proteolytic cleavage of a caspase-3 substrate—poly (ADP-ribose) polymerase (PARP). In addition, ropivacaine downregulated the expression of clusterin/ apoliporotein J, a protein with anti-apoptotic properties, in a dose-dependent manner, which well correlated with the induction of apoptosis of HaCaT cells. To investigate the role of clusterin/apoliporotein J in ropivacaine-induced apoptosis,HaCaT cells overexpressing clusterin/apoliporotein J were generated and compared to cells expressing the well established anti-apoptotic Bcl-2 protein. Ectopic overexpression of the secreted form of clusterin/apoliporotein J or Bcl-2decreased the sensitivity of HaCaT cells to toxic effects of ropivacaine as demonstrated by DNA fragmentation, the proteolytic cleavage of PARP and by a reduction in procaspase-3 expression. Furthermore, the downregulation of endogenous clusterin/apolipoprotein J levels by ropivacaine suggested that this might be one mechanism by which ropivacaine induced cell death in HaCaT cells. In conclusion, the ability of ropivacaine to induce antiproliferative responses and to suppress the expression of the anti-apoptotic protein clusterin/apolipoprotein J, combined with previously reported anti-inflammatory activity and analgesic property of the drug, suggests that ropivacaine may have potential utility in the local treatment of tumors.  相似文献   

19.
11β-Hydrocortisone (11β-HC) is an important anti-inflammatory drug and intermediate for the synthesis of other steroids. One of the methods for the synthesis of 11β-HC is the asymmetric reduction of cortisone catalyzed by a highly regioselective and stereoselective 11β-hydroxysteroid dehydrogenase (11β-HSDH). However, this process has been prohibited by the poor soluble expression of the membrane-anchoring protein 11β-HSDH in prokaryotes. To overcome this obstacle, a mutant III-1G1 (Phe80Leu/Thr105Ser/Ala260Thr/Tyr274Stop) truncated at position 274 with improved yield of soluble protein was stepwise obtained from the 11β-HSDH from guinea pig by random mutagenesis combining with structural complementation assay and C-terminal truncating library screening. The improved 11β-HSDH mutant and glucose dehydrogenase (GDH) from Bacillus subtilis were coexpressed in Escherichia coli. The resulting whole-cell biocatalyst catalyzed the reduction of cortisone to 11β-HC with 98 % conversion in 20 h, laying foundation for the development of an asymmetric reduction process for the production of 11β-HC.  相似文献   

20.
The mechanisms underlying the Hepatitis C virus (HCV) resistance to interferon alpha (IFN-α) are not fully understood. We used IFN-α resistant HCV replicon cell lines and an infectious HCV cell culture system to elucidate the mechanisms of IFN-α resistance in cell culture. The IFN-α resistance mechanism of the replicon cells were addressed by a complementation study that utilized the full-length plasmid clones of IFN-α receptor 1 (IFNAR1), IFN-α receptor 2 (IFNAR2), Jak1, Tyk2, Stat1, Stat2 and the ISRE- luciferase reporter plasmid. We demonstrated that the expression of the full-length IFNAR1 clone alone restored the defective Jak-Stat signaling as well as Stat1, Stat2 and Stat3 phosphorylation, nuclear translocation and antiviral response against HCV in all IFN-α resistant cell lines (R-15, R-17 and R-24) used in this study. Moreover RT-PCR, Southern blotting and DNA sequence analysis revealed that the cells from both R-15 and R-24 series of IFN-α resistant cells have 58 amino acid deletions in the extracellular sub domain 1 (SD1) of IFNAR1. In addition, cells from the R-17 series have 50 amino acids deletion in the sub domain 4 (SD4) of IFNAR1 protein leading to impaired activation of Tyk2 kinase. Using an infectious HCV cell culture model we show here that viral replication in the infected Huh-7 cells is relatively resistant to exogenous IFN-α. HCV infection itself induces defective Jak-Stat signaling and impairs Stat1 and Stat2 phosphorylation by down regulation of the cell surface expression of IFNAR1 through the endoplasmic reticulum (ER) stress mechanisms. The results of this study suggest that expression of cell surface IFNAR1 is critical for the response of HCV to exogenous IFN-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号