首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Being one of the most polymorphic genetic systems , the Human Leukocyte Antigen system is divided into class I (HLA-A, HLA-B and HLA-C) and class II (HLA-DP, -DQ and -DR). This study is the first and largest of its kind to describe the distribution of HLA-DQB1 and HLA-DRB1 alleles in Lebanon and the region.

Methods

Respectively, 560 and 563 Lebanese individuals referred for HLA typing and possible bone marrow/kidney donation were tested for HLA-DQB1 and HLA-DRB1 alleles using the polymerase chain reaction/sequence specific priming (PCR-SSP) method.

Results

Our data were compared to that of several populations with interesting common findings between the Lebanese, Jordanian, Bahraini, Saudi, Kuwaiti, Tunisian, Korean, Japanese, Thai, Irish, Bulgarian and Polish populations.

Conclusion

These data about the Lebanese population are going to aid future researchers to study the relation of HLA-DQB1 and HLA-DRB1 alleles with major and common diseases in the Lebanese population and will add to the available international literature associated with these loci. In addition it will serve as a reference for the future national bone marrow registry program in our country. We also reviewed the literature for the described association between HLA-DRB1 and -DQB1 loci and different disease entities.  相似文献   

2.
Our understanding of the evolution of the insulin signaling pathway (ISP) is still incomplete. One intriguing unanswered question is the explanation of the emergence of the glucostatic role of insulin in mammals. To find out whether this is due to the development of new sets of signaling transduction elements in these organisms, or to the establishment of new interactions between pre-existing proteins, we rebuilt putative orthologous ISPs in 17 eukaryotic organisms. Then, we computed the conservation of orthologous ISPs at different levels, from sequence similarity of orthologous proteins to co-evolution of interacting domains. We found that the emergence of glucostatic role in mammals can neither be explained by the development of new sets of signaling elements, nor by the establishment of new interactions between pre-existing proteins. The comparison of orthologous IRS molecules indicates that only in mammals have they acquired their complete functionality as efficient recruiters of effector sub-pathways.  相似文献   

3.
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.  相似文献   

4.
The FERM domain protein Merlin, encoded by the NF2 tumor suppressor gene, regulates cell proliferation in response to adhesive signaling. The growth inhibitory function of Merlin is induced by intercellular adhesion and inactivated by joint integrin/receptor tyrosine kinase signaling. Merlin contributes to the formation of cell junctions in polarized tissues, activates anti-mitogenic signaling at tight-junctions, and inhibits oncogenic gene expression. Thus, inactivation of Merlin causes uncontrolled mitogenic signaling and tumorigenesis. Merlin’s predominant tumor suppressive functions are attributable to its control of oncogenic gene expression through regulation of Hippo signaling. Notably, Merlin translocates to the nucleus where it directly inhibits the CRL4DCAF1 E3 ubiquitin ligase, thereby suppressing inhibition of the Lats kinases. A dichotomy in NF2 function has emerged whereby Merlin acts at the cell cortex to organize cell junctions and propagate anti-mitogenic signaling, whereas it inhibits oncogenic gene expression through the inhibition of CRL4DCAF1 and activation of Hippo signaling. The biochemical events underlying Merlin’s normal function and tumor suppressive activity will be discussed in this Review, with emphasis on recent discoveries that have greatly influenced our understanding of Merlin biology.  相似文献   

5.
Proteases are vitally important to life cycles and have become a main target in drug development. According to their action mechanisms, proteases are classified into six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Given the sequence of an uncharacterized protein, can we identify whether it is a protease or non-protease? If it is, what type does it belong to? To address these problems, a 2-layer predictor, called "ProtIdent", is developed by fusing the functional domain and sequential evolution information: the first layer is for identifying the query protein as protease or non-protease; if it is a protease, the process will automatically go to the second layer to further identify it among the six types. The overall success rates in both cases by rigorous cross-validation tests were higher than 92%. ProtIdent is freely accessible to the public as a web server at http://www.csbio.sjtu.edu.cn/bioinf/Protease.  相似文献   

6.
Lim LS  Shen P  Gong YH  Yong EL 《Phytochemistry》2006,67(7):728-734
Five dimeric phthalides were isolated from rhizomes of Ligusticum chuanxiong and their structures deduced based on spectral data. All compounds and their parent extracts were assessed for progesterone-like activity using a progesterone receptor driven reporter-gene bioassay. Among all the compounds, riligustilide, displayed weak progesterone-like activity (EC50 approximately 81 microM), whereas, (3Z')-(3a'R,6'R,3R,6R,7R)-3,8-dihydro-6.6',7.3a'-diligustilide (Mr: 382, EC50 approximately 90 nM), was found to be a potent and specific activator of the progesterone receptor. Levistolide A, although having a very similar plenary structure, was inactive indicating the importance of stereochemistry of chiral centers and flexibility of butylidene side chain for progestogenic activity. These bioactive phthalides and their parent extracts (EC50 approximately 8 microg/ml) may have utility for treatment of conditions requiring progesterone action.  相似文献   

7.
The X-ray structure for the type IIE EcoRII restriction endonuclease has been resolved [X.E. Zhou, Y. Wang, M. Reuter, M. Mucke, D.H. Kruger, E.J. Meehan and L. Chen. Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. J. Mol. Biol. 335 (2004) 307-319.], but the structure of the R.EcoRII-DNA complex is still unknown. The aim of this article was to examine the structure of the pre-reactive R.EcoRII-DNA complex in solution by fluorescence spectroscopy. The structure for the R.EcoRII-DNA complex was resolved by determining the fluorescence resonance energy transfer (FRET) between two fluorescent dyes, covalently attached near the EcoRII recognition sites, that were located at opposite ends of a lengthy two-site DNA molecule. Analysis of the FRET data from the two-site DNA revealed a likely model for the arrangement of the two EcoRII recognition sites relative to each other in the R.EcoRII-DNA complex in the presence of Ca(2+) ions. According to this model, the R.EcoRII binds the two-site DNA and forms a DNA loop in which the EcoRII recognition sites are 20+/-10 A distant to each other and situated at an angle of 70+/-10 degrees.  相似文献   

8.
From the many attempts to produce a conceptual framework for the organization of living systems, the notions of (M,R) systems and Autopoiesis stand out for their rigor, their presupposition of the circularity of metabolism, and the new epistemologies that they imply. From their inceptions, these two notions have been essentially disconnected because each has defined its own language and tools. Here we demonstrate the existence of a deep conceptual link between (M,R) systems and Autopoietic systems. This relationship permits us to posit that Autopoietic systems, which have been advanced as capturing the central aspects of living systems, are a subset of (M,R) systems. This result, in conjunction with previous theorems proved by Rosen, can be used to outline a demonstration that the operation of Autopoietic systems cannot be simulated by Turing machines. This powerful result shows the potential of linking these two models. Finally, we suggest that the formalism of (M,R) systems could be used to model the circularity of metabolism.  相似文献   

9.
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction.  相似文献   

10.
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.  相似文献   

11.
The dimeric mammalian phosphodiesterases (PDEs) are regulated by N-terminal domains. In PDE5, the GAF-A subdomain of a GAF-tandem (GAF-A and -B) binds the activator cGMP and in PDE10 GAF-B binds cAMP. GAF-tandem chimeras of PDE5 and 10 in which the 36 aa linker helix between GAF-A and -B was swapped lost allosteric regulation of a reporter adenylyl cyclase. In 16 consecutive constructs we substituted the PDE10 linker with that from PDE5. An initial stretch of 10 amino acids coded for isoform specificity. A C240Y substitution uncoupled cyclase activity from regulation, whereas C240F, L or G did not. The C240Y substitution increased basal activity to stimulated levels. Notably, over the next 12 substitutions basal cyclase activity decreased linearly.Further targeted substitutions were based on homology modeling using the PDE2 structure. No combination of substitutions within the initial 10 linker residues caused loss of regulation. The full 10 aa stretch was required. Modeling indicated a potential interaction of the linker with a loop from GAF-A. To interrupt H-bonding a glycine substitution of the loop segment was generated. Despite reduction of basal activity, loss of regulation was maintained. Possibly, the orientation of the linker helix is determined by formation of the dimer at the initial linker segment. Downstream deflections of the linker helix may have caused loss of regulation.  相似文献   

12.
Expansion of molecular diagnostics more widely into clinical routines requires simplified methods allowing automation. We developed a homogeneous, multilabel polymerase chain reaction (PCR) method based on time-resolved fluorometry, and studied the use of dried disk samples in PCR. Celiac disease-related HLA-DQA1*05, HLA-DQB1*02, and HLA-DQB1*0302 genotyping was used to verify the method with blood and saliva samples dried on S&S 903 and IsoCode sample collection papers. Three sample preparation procedures, including manufacturer’s manual elution, an automated elution, and direct use of disk samples, were compared using dried disk samples. The three procedures gave successful amplification and correct genotyping results. Owing to the simplicity of the direct use of disk samples in PCR, this method was chosen for the subsequent homogeneous analysis of blood (n = 194) and saliva (n = 30) disk samples on S&S 903 paper. The results revealed that, in addition to DNA samples (n = 29), both blood and saliva disk samples were successfully amplified and genotyped using the homogeneous PCR assays for HLA-DQA1 and HLA-DQB1. The homogeneous PCR assays developed provide a useful tool to genotype celiac disease-related HLA-DQA1*05, HLA-DQB1*02, and HLA-DQB1*0302 alleles. Furthermore, the method provides a direct way to perform a closed-tube PCR analysis of dried blood and saliva disk samples enabling simple automation.  相似文献   

13.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   

14.
We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins. These positions lie in the loop connecting helix-1 and helix-2, which is involved in heterodimerization with the alpha 2 protein. A series of single and double amino acid substitutions (a1-Q24R, a1-S25Y, a1-S25F and a1-Q24R/S25Y) were engineered, expressed and purified for biochemical and biophysical study. Calorimetric measurements and HSQC NMR spectra confirm that the engineered variants are folded and are equally or more stable than the wild-type a1 homeodomain. NMR analysis of a1-Q24R/S25Y demonstrates that the DNA recognition helix (helix-3) is extended by at least one turn as a result of the changes in the loop connecting helix-1 and helix-2. As shown by EMSA, the engineered variants bind DNA with enhanced affinity (16-fold) in the absence of the alpha 2 cofactor and the variant alpha 2/a1 heterodimers bind cognate DNA with specificity and affinity reflective of the enhanced a1 binding affinity. Importantly, in vivo assays demonstrate that the a1-Q24R/S25Y protein binds with fivefold greater affinity than wild-type a1 and is able to partially suppress defects in repression by alpha 2 mutants. As a result of these studies, we show how subtle differences in residues at a surface distant from the functional site code for a conformational switch that allows the a1 homeodomain to become active in DNA binding in association with its cofactor alpha 2.  相似文献   

15.
Sun J  Lou H  Dai S  Xu H  Zhao F  Liu K 《Phytochemistry》2008,69(6):1405-1410
Five indole alkaloids (naucleofficines A-E) were isolated from the stems (with bark) of Nauclea officinalis: (E)-2-(1-beta-d-glucopyranosyloxybut-2-en-2-yl)-3-(hydroxymethyl)-6,7-dihydro-indolo[2,3-a]quinolizin-4(12H)-one (1), (E)-1-propenyl-12-beta-d-glucopyranosyloxy-2,7,8-trihydro-indolo[2,3-a]pyran[3,4-g]quinolizin-4,5(13H)-dione (2), (E)-2-(1-hydroxybut-2-en-2-yl)-11-beta-d-glucopyranosyloxy-6,7-dihydro-indolo[2,3-a]quinolizin-4(12H)-one (3), (E)-1-propenyl-4-hydroxy-2,4a,7,8,13b,14,14a-hepthydro-(4alpha,4abeta,13balpha,14abeta)indolo[2,3-a]pyran[3,4-g]quinolizin-5(13H)-one (4) and 1-(1-hydroxyethyl)-10-hydroxy-7,8-dihydro-indolo[2,3-a]pirydine[3,4-g]quinolizin-5(13H)-one (10-hydroxyangustoline) (5), together with two known compounds, naucleidinal (6) and angustoline (7). All of the structures of the seven compounds above were elucidated by spectroscopic methods including use of 1D- and 2D-NMR spectroscopic analyses. Compounds 2 and 3 are rare examples of monoterpene indole alkaloids with a glucopyranosyloxy group attached to position C-12. In vitro activity screening of the above seven compounds showed weak to moderate inhibitory activity against Plasmodium falciparum.  相似文献   

16.
From an NH2-terminal sequence analysis of the long and short form of myosin subfragment 2 we have suggested that the putative hinge region in the myosin rod is located in the COOH-terminal portion of the long subfragment 2 (Lu, R. C. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2010-2013). The amino acid sequence of this hinge region has now been determined: ASRA KAEKQRSDLSRELEEISERLEEAGGATSAQIEMNK KREAEFEKMRRDLEEATLQHEATAAALRKKHAD SVAELGEQIDNLQRVKQKLEKEKSELKMEIDDLA GNMETVSKAKGNLEKMCRTLEDQ(L/V)SE(V/L)KT KEEEHQRLIN(D/E)L(S/G)AQ(K/R)AR. Comparison of the sequence with that of other portions of the rod, viz. short subfragment 2 and light meromyosin, and of tropomyosin shows that the hinge region shares some feature of a coiled-coil helical structure, but it has somewhat fewer hydrophobic coil-coil interactions and there is a significant number of charged residues in the hydrophobic core region. This suggests that the stability of the putative hinge region would be reduced in comparison with other coiled-coil structures.  相似文献   

17.
Two new zinc-triazole-carboxylate frameworks constructed from secondary building units (SBUs), [Zn5(trz)4(btc)2(DMF)2(H2O)2]·2H2O·DMF (1) and [Zn4(trz)3(btc)2(CH3CN)(H2O)]·5H2O·(Bu4N) (2), [Htrz = 1,2,4-triazole, H3btc = 1,2,4-benzenetricarboxylate, Bu4N = tetrabutylammonium], have been synthesized by solvothermal reactions and characterized by single-crystal X-ray diffraction analyses, X-ray power diffraction, elemental analyses, infrared spectra and thermogravimetric analyses. Both compounds 1 and 2 exhibit 3D (3,8)-connected tfz-d nets with {43}2{46.618.84} topology symbol built from rod-shaped {[Zn5(trz)4]6+}n SBUs (1) and {[Zn4(trz)3]5+}n SBUs (2). In two compounds, rodlike units are connected by btc ligands via different modes. Additionally, solid state fluorescent emission spectra of two compounds show fluorescent properties at room temperature.  相似文献   

18.
The interaction between the calcium-binding protein S100A4 and the C-terminal fragments of nonmuscle myosin heavy chain IIA has been studied by equilibrium and kinetic methods. Using site-directed mutants, we conclude that Ca2+ binds to the EF2 domain of S100A4 with micromolar affinity and that the Kd value for Ca2+ is reduced by several orders of magnitude in the presence of myosin target fragments. The reduction in Kd results from a reduced dissociation rate constant (from 16 s− 1 to 0.3 s− 1 in the presence of coiled-coil fragments) and an increased association rate constant. Using peptide competition assays and NMR spectroscopy, we conclude that the minimal binding site on myosin heavy chain IIA corresponds to A1907-G1938; therefore, the site extends beyond the end of the coiled-coil region of myosin. Electron microscopy and turbidity assays were used to assess myosin fragment filament disassembly by S100A4. The latter assay demonstrated that S100A4 binds to the filaments and actively promotes disassembly rather than just binding to the myosin monomer and displacing the equilibrium. Quantitative modelling of these in vitro data suggests that S100A4 concentrations in the micromolar region could disassemble myosin filaments even at resting levels of cytoplasmic [Ca2+]. However, for Ca2+ transients to be effective in further promoting dissociation, the elevated Ca2+ signal must persist for tens of seconds. Fluorescence recovery after photobleaching of A431/SIP1 cells expressing green fluorescent protein-myosin IIA, immobilised on fibronectin micropatterns to control stress fibre location, yielded a recovery time constant of around 20 s, consistent with in vitro data.  相似文献   

19.
Cytochrome c oxidase (CcO) is the terminal enzyme of aerobic respiration. The energy released from the reduction of molecular oxygen to water is used to pump protons across the mitochondrial or bacterial membrane. The pump function introduces a mechanistic requirement of a valve that prevents protons from flowing backwards during the process. It was recently found that Glu-242, a key amino acid in transferring protons to be pumped across the membrane and to the site of oxygen reduction, fulfils the function of such a valve by preventing simultaneous contact to the pump site and to the proton-conducting D-channel (Kaila V.R.I. et al. Proc. Natl. Acad. Sci. USA 105, 2008). Here we have incorporated the valve model into the framework of the reaction mechanism. The function of the Glu valve is studied by exploring how the redox state of the surrounding metal centers, dielectric effects, and membrane potential, affects the energetics and leaks of this valve. Parallels are drawn between the dynamics of Glu-242 and the long-standing obscure difference between the metastable OH and stable O states of the binuclear center. Our model provides a suggestion for why reduction of the former state is coupled to proton translocation while reduction of the latter is not.  相似文献   

20.
Global urbanization is a major force that causes alteration and loss of natural habitats. Urban ecosystems are strongly affected by humans and there is a gradient of decreasing human influence from city centers to natural habitats. To study ecological changes along this continuum, researchers introduced the urban-rural gradient approach. The responses of centipedes to an urbanization gradient (urban-suburban-rural areas) were studied using pitfall traps in and near the city of Heraklion, in the island of Crete, Greece, from November 2010 to November 2011. Our results do not support the intermediate disturbance hypothesis, in which suburban areas located in the transitional zone between urban and rural habitats failed to indicate significant increase in terms of species richness and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号