首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Mangroves are unique and highly productive ecosystems and harbor very special microbial communities. Although the phylogenetic diversity of sediment microbial communities of mangrove habitats has been examined extensively, little is known regarding their functional gene diversity and metabolic potential. In this study, a high-throughput functional gene array (GeoChip 4.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of microbial communities in mangrove habitats from mangrove national nature reserves in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 4.0 were detected in the mangrove microbial communities, including carbon (C) fixation, C degradation, methane generation, nitrogen (N) fixation, nitrification, denitrification, ammonification, N reduction, sulfur (S) metabolism, metal resistance, antibiotic resistance, and organic contaminant degradation. Detrended correspondence analysis (DCA) of all detected genes showed that Spartina alterniflora (HH), an invasive species, did not harbor significantly different microbial communities from Aegiceras corniculatum (THY), a native species, but did differ from other species, Kenaelia candel (QQ), Aricennia marina (BGR), and mangrove-free mud flat (GT). Canonical correspondence analysis (CCA) results indicated the microbial community structure was largely shaped by surrounding environmental variables, such as total nitrogen (TN), total carbon (TC), pH, C/N ratio, and especially salinity. This study presents a comprehensive survey of functional gene diversity of soil microbial communities from different mangrove habitats/species and provides new insights into our understanding of the functional potential of microbial communities in mangrove ecosystems.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.  相似文献   

20.
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号