首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The affinities of three problematic groups of elongate, burrowing reptiles (amphisbaenians, dibamids and snakes) are reassessed through a phylogenetic analysis of all the major groups of squamates, including the important fossil taxa Sineoamphisbaena, mosasauroids and Pachyrhachis; 230 phylogenetically informative osteological characters were evaluated in 22 taxa. Snakes (including Pachyrhachis) are anguimorphs, being related firstly to large marine mosasauroids, and secondly to monitor lizards (varanids). Scincids and cordylids are not related to lacertiforms as previously thought, but to anguimorphs. Amphisbaenians and dibamids are closely related, and Sineoamphisbaena is the sister group to this clade. The amphisbaenian-dibamid-Sineoamphisbaena clade, in turn, is related to gekkotans and xantusiids. When the fossil taxa are ignored, snakes, amphisbaenians and dibamids form an apparently well-corroborated clade nested within anguimorphs. However, nearly all of the characters supporting this arrangement are correlated with head-first burrowing (miniaturization, cranial consolidation, body elongation, limb reduction), and invariably co-occur in other tetrapods with similar habits. These characters are potentially very misleading because of their sheer number and because they largely represent reductions or losses. It takes very drastic downweighting of these linked characters to alter tree topology: if fossils are excluded from the analysis, a (probably spurious) clade consisting of elongate, fossorial taxa almost always results. These results underscore the importance of including all relevant taxa in phylogenetic analyses. Inferring squamate phylogeny depends critically on the inclusion of certain (fossil) taxa with combinations of character states that demonstrate convergent evolution of the elongate, fossorial ecomorph in amphisbaenians and dibamids, and in snakes. In the all-taxon analysis, the position of snakes within anguimorphs is more strongly-corroborated than the association of amphisbaenians and dibamids with gekkotans. When the critical fossil taxa are deleted, snakes ‘attract’ the amphisbaenian-dibamid clade on the basis of a suite of correlated characters. While snakes remain anchored in anguimorphs, the amphisbaenian-dibamid clade moves away from gekkotans to join them. Regardless of the varying positions of the three elongate burrowing taxa, the interrelationships between the remaining limbed squamates (‘lizards’) are constant; thus, the heterodox affinities of scincids, cordylids, and xantusiids identified in this analysis appear to be robust. Finally, the position of Pachyrhachis as a basal snake rather than (as recently suggested) a derived snake is supported on both phylogenetic and evolutionary grounds.  相似文献   

2.
Relationships between the major lineages of snakes are assessed based on a phylogenetic analysis of the most extensive phenotypic data set to date (212 osteological, 48 soft anatomical, and three ecological characters). The marine, limbed Cretaceous snakes Pachyrhachis and Haasiophis emerge as the most primitive snakes: characters proposed to unite them with advanced snakes (macrostomatans) are based on unlikely interpretations of contentious elements or are highly variable within snakes. Other basal snakes include madtsoiids and Dinilysia--both large, presumably non-burrowing forms. The inferred relationships within extant snakes are broadly similar to currently accepted views, with scolecophidians (blindsnakes) being the most basal living forms, followed by anilioids (pipesnakes), booids and booid-like groups, acrochordids (filesnakes), and finally colubroids. Important new conclusions include strong support for the monophyly of large constricting snakes (erycines, boines. pythonines), and moderate support for the non-monophyly of the trophidophiids' (dwarf boas). These phylogenetic results are obtained whether varanoid lizards, or amphisbaenians and dibamids, are assumed to be the nearest relatives (outgroups) of snakes, and whether multistate characters are treated as ordered or unordered. Identification of large marine forms, and large surface-active terrestrial forms, as the most primitive snakes contradicts with the widespread view that snakes arose via minute, burrowing ancestors. Furthermore, these basal fossil snakes all have long flexible jaw elements adapted for ingesting large prey ('macrostomy'), suggesting that large gape was primitive for snakes and secondarily reduced in the most basal living foms (scolecophidians and anilioids) in connection with burrowing. This challenges the widespread view that snake evolution has involved progressive, directional elaboration of the jaw apparatus to feed on larger prey.  相似文献   

3.
Most previous phylogenetic analyses of squamates (‘lizards’ and snakes) employing large character sets have focused on osteology. Soft anatomical traits bearing on this problem have usually been considered in small subsets. Here, a comprehensive phylogenetic analysis of squamate soft anatomy is attempted. 126 informative characters are assessed for 23 squamate lineages, representing snakes, amphisbaenians, dibamids, and all the traditionally recognized ‘families’ of lizards. The traditionally recognized groupings Iguania, Scleroglossa, Gekkota, Scincomorpha, Anguimorpha and Varanoidea are corroborated in this analysis. More controversial taxa are resolved as follows. Xantusiids, amphisbaenians and dibamids cluster with gekkotans, and snakes are strongly allied with anguimorphs in general, and varanids in particular. Nearly all these clades are congruent with those found in a recent comprehensive osteological analysis; the strong support for snake‐varanid relationships found in both studies is particularly notable. This congruence is surprising given that previous studies of soft anatomy tended to give differing and often heterodox results. These previous results can be attributed to overrepresentation of misleading characters in small isolated data sets. Such misleading signals are minimized when data sets are combined. For instance, the snake‐varanid clade is contradicted by many characters, and analyses of particular organ systems therefore give differing results. However, characters that are incongruent with the snake‐varanid clade also disagree with each other (diffuse homoplasy), rather than forming coherent support for some particular alternative clade (concerted homoplasy). In a combined analysis these incongruent but diffuse characters cancel each other out to leave a very strong (and orthodox) phylogenetic signal. These results underscore the view that the raw amount of homoplasy — as revealed by consistency and retention indices — is not the only determinant of phylogenetic signal; the distribution of that homoplasy is also important. Thus, questioning a phylogenetic hypothesis (e.g. the snake‐varanid clade) by identifying numerous conflicting characters is insufficient — the structure of the conflicting characters should be assessed in a rigorous phylogenetic analysis.  相似文献   

4.
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.  相似文献   

5.
Lee MS 《Biology letters》2005,1(2):227-230
A molecular phylogeny was used to refute the marine scenario for snake origins. Nuclear gene sequences suggested that snakes are not closely related to living varanid lizards, thus also apparently contradicting proposed relationships between snakes and marine mosasaurs (usually considered to be varanoids). However, mosasaurs share derived similarities with both snakes and living varanids. A reanalysis of the morphological data suggests that, if the relationships between living taxa are constrained to the proposed molecular tree, with fossil forms allowed to insert in their optimal positions within this framework, mosasaurs cluster with snakes rather than with varanids. Combined morphological and molecular analyses also still unite marine lizards with snakes. Thus, the molecular data do not refute the phylogenetic evidence for a marine origin of snakes.  相似文献   

6.
A mitogenomic study on the phylogenetic position of snakes   总被引:2,自引:0,他引:2  
Phylogenetic relationships of squamates (lizards, amphisbaenians and snakes) have received considerable attention, although no consensus has been reached concerning some basal divergences. This paper focuses on the Serpentes (snakes), whose phylogenetic position within the Squamata remains uncertain despite a number of morphological and molecular studies. Some mitogenomic studies have suggested a sister-group relationship between snakes and varanid lizards, while other studies have identified snakes and lizards as sister groups. However, recent studies using nuclear data have presented a different scenario, with snakes being more closely related to anguimorph and iguanian lizards. In this mitogenomic study we have examined the above hypotheses with the inclusion of amphisbaenians, one gekkotan and one acrodont lizard, taxa not represented in previous mitogenomic studies. To this end we have also extended the representation of snakes by sequencing five additional snake genomes: two scolecophidians ( Ramphotyphlops australis and Typhlops mirus ) two henophidians ( Eunectes notaeus and Boa constrictor ) and one caenophidian ( Elaphe guttata ). The phylogenetic analysis recovered snakes and amphisbaenians as sister groups, thereby differing from previous hypotheses. In addition to a discussion on previous morphological and molecular studies in light of the results presented here, the current study also provides some details regarding features of the new snake mitochondrial genomes described.  相似文献   

7.
Evidence that platynotan squamates (living varanoid lizards, snakes and their fossil relatives) are monophyletic is presented. Evolutionary relationships within this group are then ascertained through a cladistic analysis of 144 osteological characters. Mosasauroids (aigialosaurs and mosasaurs), a group of large marine lizards, are identified as the nearest relatives of snakes, thus resolving the long-standing problem of snake affinities. The mosasauroid–snake clade (Pythonomorpha) is corroborated by 40 derived characters, including recumbent replacement teeth, thecodonty, four or fewer premaxillary teeth, supratemporal–prootic contact, free mandibular tips, crista circumfenestralis, straight vertical splenio-angular joint, loss of posterior ramus of the coronoid, reduced basipterygoid processes, reduced interpterygoid vacuity, zygosphene–zygantral articulations, and absence of epiphyses on the axial skeleton and skull. After mosasauroids, the next closest relatives of snakes are varanids (Varanus, Saniwa and Saniwides) and lanthanotids (Lanthanotus and Cherminotus). Derived features uniting varanids and lanthanotids include nine cervical vertebrae and three or fewer pairs of sternal ribs. The varanid–lanthanotid–pythonomorph clade, here termed Thecoglossa, is supported by features such as the anteriorly positioned basal tubera, and the loss of the second epibranchial. Successive outgroups to thecoglossans are Telmasaurus, an unresolved polytomy (Estesia, Gobidermatidae and Helodermatidae), Paravaranus and Proplatynota. The ''necrosaurs'' are demonstrated to be an artificial (polyphyletic) assemblage of primitive platynotans that are not particularly closely related to each other.Snakes are presumed to have evolved from small, limbless, burrowing lizards and the inability of previous analyses to resolve the affinities of snakes has been attributed to extensive convergence among the numerous lineages of such lizards. The present study contradicts this claim, demonstrating that the problem is due instead to omission of critical fossil taxa. No modern phylogenetic analysis of squamate relationships has simultaneously included both mosasauroids and snakes: previous studies have therefore failed to identify the mosasauroid–snake association and the suite of derived characters supporting it. Mosasauroids are large aquatic animals with well-developed appendages, and none of the derived characters uniting mosasauroids and snakes is obviously correlated with miniaturization, limb reduction or fossoriality. Recognition that mosasauroids, followed by varanids and lanthanotids, are the nearest relatives of snakes will also facilitate studies of relationships within snakes, which until now have been hampered by uncertainty over the most appropriate (closely-related) lizard outgroups.  相似文献   

8.
Vidal N  Hedges SB 《Comptes rendus biologies》2005,328(10-11):1000-1008
Squamate reptiles number approximately 8000 living species and are a major component of the world's terrestrial vertebrate diversity. However, the established relationships of the higher-level groups have been questioned in recent molecular analyses. Here we expand the molecular data to include DNA sequences, totaling 6192 base pairs (bp), from nine nuclear protein-coding genes (C-mos, RAG1, RAG2, R35, HOXA13, JUN, alpha-enolase, amelogenin and MAFB) for 19 taxa representing all major lineages. Our phylogenetic analyses yield a largely resolved phylogeny that challenges previous morphological analyses and requires a new classification. The limbless dibamids are the most basal squamates. Of the remaining taxa (Bifurcata), the gekkonids form a basal lineage. The Unidentata, squamates that are neither dibamids nor gekkonids, are divided into the Scinciformata (scincids, xantusiids, and cordylids) and the Episquamata (remaining taxa). Episquamata includes Laterata (Teiformata, Lacertiformata, and Amphisbaenia, with the latter two joined in Lacertibaenia) and Toxicofera (iguanians, anguimorphs and snakes). Our results reject several previous hypotheses that identified either the varanids, or a burrowing lineage such as amphisbaenians or dibamids, as the closest relative of snakes. Our study also rejects the monophyly of both Scleroglossa and Autarchoglossa, because Iguania, a species-rich lineage (ca. 1440 sp.), is in a highly nested position rather than being basal among Squamata. Thus iguanians should not be viewed as representing a primitive state of squamate evolution but rather a specialized and successful clade combining lingual prehension, dependence on visual cues, and ambush foraging mode, and which feeds mainly on prey avoided by other squamates. Molecular time estimates show that the Triassic and Jurassic (from 250 to 150 Myr) were important times for squamate evolution and diversification.  相似文献   

9.
Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.  相似文献   

10.
Abstract: The smallest living amniotes are all lizards, but the fossil history of this size trait in Squamata is difficult to follow because small skeletons have low preservation potential and are often hard to detect in the field. A new squamate taxon, Jucaraseps grandipes gen. et sp. nov., is here described on the basis of an articulated skeleton from the Early Cretaceous Spanish lagerstätten of Las Hoyas. It differs from other known Mesozoic lizards in combining very small body size with a short rostrum, low maxillary tooth count, a relatively slender and elongated body, and short limbs with large hind feet. Phylogenetic analysis using TNT places it on the stem of a clade encompassing scincomorphs, gekkotans, snakes, amphisbaenians and anguimorphs. Comparison with modern lizards suggests it was probably a cryptic surface or subsurface ground dweller but not a burrower.  相似文献   

11.
Squamate reptiles (lizards, snakes, amphisbaenians) number approximately 8200 living species and are a major component of the world's terrestrial vertebrate diversity. Recent molecular phylogenies based on protein-coding nuclear genes have challenged the classical, morphology-based concept of squamate relationships, requiring new classifications, and drawing new evolutionary and biogeographic hypotheses. Even the key and long-held concept of a dichotomy between iguanians (~1470 sp.) and scleroglossans (all other squamates) has been refuted because molecular trees place iguanians in a highly nested position. Together with snakes and anguimorphs, iguanians form a clade – Toxicofera – characterized by the presence of toxin secreting oral glands and demonstrating a single early origin of venom in squamates. Consequently, neither the varanid lizards nor burrowing lineages such as amphisbaenians or dibamid lizards are the closest relative of snakes. The squamate timetree shows that most major groups diversified in the Jurassic and Cretaceous, 200–66 million years (Myr) ago. In contrast, five of the six families of amphisbaenians arose during the early Cenozoic, ~60–40 Myr ago, and oceanic dispersal on floating islands apparently played a significant role in their distribution on both sides of the Atlantic Ocean. Among snakes, molecular data support the basic division between the small fossorial scolecophidians (~370 sp.) and the alethinophidians (all other snakes, ~2700 sp.). They show that the alethinophidians were primitively macrostomatan and that this condition was secondarily lost by burrowing lineages. The diversification of alethinophidians resulted from a mid-Cretaceous vicariant event, the separation of South America from Africa, giving rise to Amerophidia (aniliids and tropidophiids) and Afrophidia (all other alethinophidians). Finally, molecular phylogenies have made it possible to draw a detailed evolutionary history of venom among advanced snakes (Caenophidia), a key functional innovation underlying their radiation (~2500 sp.). To cite this article: N. Vidal, S.B. Hedges, C. R. Biologies 332 (2009).  相似文献   

12.
Facultative parthenogenesis (FP)—asexual reproduction by bisexual species—has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes—the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted.  相似文献   

13.
14.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

15.
Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.  相似文献   

16.
Lampridiformes is a peculiar clade of pelagic marine acanthomorph (spiny‐rayed) teleosts. Its phylogenetic position remains ambiguous, and varies depending on the type of data (morphological or molecular) used to infer interrelationships. Because the extreme morphological specializations of lampridiforms may have overwritten the ancestral features of the group with a bearing on its relationships, the inclusion of fossils that exhibit primitive character state combinations for the group as a whole is vital in establishing its phylogenetic position. Therefore, we present an osteological data set of extant (ten taxa) and fossil (14 taxa) acanthomorphs, including early Late Cretaceous taxa for which a close relationship with extant Lampridiformes has been suggested: ?Aipichthyoidea, ?Pharmacichthyidae, and ?Pycnosteroididae. We find that all three taxa plus Lampridiformes form a clade that we call Lampridomorpha. Under this hypothesis, ?Aipichthyoidea is paraphyletic. The inclusion of fossils in the analysis changes the topology, highlighting their critical importance in phylogenetic studies of morphological characters. When fossils are included, Lampridomorpha is sister to Euacanthomorpha (all other extant acanthomorphs), concurring with most previous anatomical studies, but conflicting with most molecular results. Lampridomorpha as a whole was a major component of the earliest acanthomorph faunas, notably in the Cenomanian. © 2014 The Linnean Society of London  相似文献   

17.
Sex-determining mechanisms in reptiles can be divided into two convenient classifications: genotypic (GSD) and environmental (ESD). While a number of types of GSD have been identified in a wide variety of reptilian taxa, the expression of ESD in the form of temperature-dependent sex determination (TSD) in three of the five major reptilian lineages has drawn considerable attention to this area of research. Increasing interest in sex-determining mechanisms in reptiles has resulted in many data, but much of this information is scattered throughout the literature and consequently difficult to interpret. It is known, however, that distinct sex chromosomes are absent in the tuatara and crocodilians, rare in amphisbaenians (worm lizards) and turtles, and common in lizards and snakes (but less than 20% of all species of living reptiles have been karyotyped). With less than 2 percent of all reptilian species examined, TSD apparently is absent in the tuatara, amphisbaenians and snakes; rare in lizards, frequent in turtles, and ubiquitous in crocodilians. Despite considerable inter- and intraspecific variation in the threshold temperature (temperature producing a 1:1 sex ratio) of gonadal sex determination, this variation cannot confidently be assigned a genetic basis owing to uncontrolled environmental factors or to differences in experimental protocol among studies. Laboratory studies have identified the critical period of development during which gonadal sex determination occurs for at least a dozen species. There are striking similarities in this period among the major taxa with TSD. Examination of TSD in the field indicates that sex ratios of hatchlings are affected by location of the nests, because some nests produce both sexes whereas the majority produce only one sex. Still, more information is needed on how TSD operates under natural conditions in order to fully understand its ecological and conservation implications. TSD may be the ancestral sex-determining condition in reptiles, but this result remains tentative. Physiological investigations of TSD have clarified the roles of steroid hormones, various enzymes, and H-Y antigen in sexual differentiation, whereas molecular studies have identified several plausible candidates for sex-determining genes in species with TSD. This area of research promises to elucidate the mechanism of TSD in reptiles and will have obvious implications for understanding the basis of sex determination in other vertebrates. Experimental and comparative investigations of the potential adaptive significance of TSD appear equally promising, although much work remains to be performed. The distribution of TSD within and among the major reptilian lineages may be related to the life span of individuals of a species and to the biogeography of these species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Death adders (genus Acanthophis) differ from most other elapid snakes, and resemble many viperid snakes, in their thickset morphology and ambush foraging mode. Although these snakes are widely distributed through Australia and Papua New Guinea, their basic biology remains poorly known. We report morphological and ecological data based upon dissection of >750 museum specimens drawn from most of the range of the genus. Female death adders grow larger than conspecific males, to about the same extent in all taxa (20% in mean adult snout-vent length,  =  SVL). Most museum specimens were adult rather than juvenile animals, and adult males outnumbered females in all taxa except A. pyrrhus. Females have shorter tails (relative to SVL) than males, and longer narrower heads (relative to head length) in some but not all species. The southern A. antarcticus is wider-bodied (relative to SVL) than the other Australian species. Fecundity of these viviparous snakes was similar among taxa (mean litter sizes 8 to 14). Death adders encompass a broad range of ecological attributes, taking a wide variety of vertebrate prey, mostly lizards (55%), frogs and mammals (each 21%; based on 217 records). Dietary composition differed among species (e.g. frogs were more common in tropical than temperate-zone species), and shifted with snake body size (endotherms were taken by larger snakes) and sex (male death adders took more lizards than did females). Overall, death adders take a broader array of prey types, including active fast-moving taxa such as endotherms and large diurnal skinks, than do most other Australian elapids of similar body sizes. Ambush foraging is the key to capturing such elusive prey.  相似文献   

19.
From the later part of the Devonian through the Permian, calcareous foraminifers became abundant and evolved rapidly. This rapid evolution of taxa forms the basis of a detailed zonation through the Carboniferous and Permian. Comparison of this evolutionary history of foraminifers, their biostratigraphic zonation, and the depositional sequences in which they occur suggests that sea-level events in late Paleozoic depositional history contributed significantly in subdividing a fairly continuous evolutionary record into a succession of about 75 identifiable foraminiferal zones during a 100–125 Myr time span. Although variable in terms of duration and vertical occurrences, the more completely recorded high-stand intervals give brief histories of the foraminiferal evolutionary record and are sandwiched between the poorly recorded or unrecorded low-stand intervals. Many of the individual foraminiferal zones are confined to a single depositional sequence.The late Paleozoic carbonate foraminiferal fossil record, as with the rest of the fossil record, is strongly affected by sediment deposition-nondeposition as a result of major changes in sea level. This incomplete fossil record is the result of repeated depositional breaks because of the way that depositional sequences form. It is not possible to ascribe macromutations, ‘punctuated’ evolution or ‘punctuated gradualism’ as the cause of this evolutionary pattern of the shelf-carbonate fossil record. This pattern is distinctive and we refer to it as ‘sequence evolution’ and ‘sequence extinction’. In the later part of the Middle Permian and in the Late Permian, the fossil record clearly illustrates that a series of faunal losses through ‘sequence extinctions’ progressively exceeded faunal replacements and new species through ‘sequence evolution’, but not a ‘mass extinction’ as is commonly ascribed to the end of the Permian Period. Most Permian faunas became extinct in the interval of 8 to 4 million years before the end of the Late Permian.  相似文献   

20.
Although live-bearing (viviparity) has evolved around 100 times within reptiles, evidence of it is almost never preserved in the fossil record. Here, we report viviparity in mosasauroids, a group of Cretaceous marine lizards. This is the only known fossil record of live-bearing in squamates (lizards and snakes), and might represent the oldest occurrence of the trait in this diverse group; it is also the only known fossil record of viviparity in reptiles other than ichthyosaurs. An exceptionally preserved gravid female of the aigialosaur Carsosaurus (a primitive mosasauroid) contains at least four advanced embryos distributed along the posterior two-thirds of the long trunk region (dorsal vertebrae 9-21). Their orientation suggests that they were born tail-first (the nostrils emerging last) to reduce the possibility of drowning, an adaptation shared with other highly aquatic amniotes such as cetaceans, sirenians and ichthyosaurs; the orientation of the embryos also suggests that they were not gut contents because swallowed prey are usually consumed head-first. One embryo is located within the pelvis, raising the possibility that the adult died during parturition. Viviparity in early medium-sized amphibious aigialosaurs may have freed them from the need to return to land to deposit eggs, and permitted the subsequent evolution of gigantic totally marine mosasaurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号