首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The affinities of three problematic groups of elongate, burrowing reptiles (amphisbaenians, dibamids and snakes) are reassessed through a phylogenetic analysis of all the major groups of squamates, including the important fossil taxa Sineoamphisbaena, mosasauroids and Pachyrhachis; 230 phylogenetically informative osteological characters were evaluated in 22 taxa. Snakes (including Pachyrhachis) are anguimorphs, being related firstly to large marine mosasauroids, and secondly to monitor lizards (varanids). Scincids and cordylids are not related to lacertiforms as previously thought, but to anguimorphs. Amphisbaenians and dibamids are closely related, and Sineoamphisbaena is the sister group to this clade. The amphisbaenian-dibamid-Sineoamphisbaena clade, in turn, is related to gekkotans and xantusiids. When the fossil taxa are ignored, snakes, amphisbaenians and dibamids form an apparently well-corroborated clade nested within anguimorphs. However, nearly all of the characters supporting this arrangement are correlated with head-first burrowing (miniaturization, cranial consolidation, body elongation, limb reduction), and invariably co-occur in other tetrapods with similar habits. These characters are potentially very misleading because of their sheer number and because they largely represent reductions or losses. It takes very drastic downweighting of these linked characters to alter tree topology: if fossils are excluded from the analysis, a (probably spurious) clade consisting of elongate, fossorial taxa almost always results. These results underscore the importance of including all relevant taxa in phylogenetic analyses. Inferring squamate phylogeny depends critically on the inclusion of certain (fossil) taxa with combinations of character states that demonstrate convergent evolution of the elongate, fossorial ecomorph in amphisbaenians and dibamids, and in snakes. In the all-taxon analysis, the position of snakes within anguimorphs is more strongly-corroborated than the association of amphisbaenians and dibamids with gekkotans. When the critical fossil taxa are deleted, snakes ‘attract’ the amphisbaenian-dibamid clade on the basis of a suite of correlated characters. While snakes remain anchored in anguimorphs, the amphisbaenian-dibamid clade moves away from gekkotans to join them. Regardless of the varying positions of the three elongate burrowing taxa, the interrelationships between the remaining limbed squamates (‘lizards’) are constant; thus, the heterodox affinities of scincids, cordylids, and xantusiids identified in this analysis appear to be robust. Finally, the position of Pachyrhachis as a basal snake rather than (as recently suggested) a derived snake is supported on both phylogenetic and evolutionary grounds.  相似文献   

2.
Most previous phylogenetic analyses of squamates (‘lizards’ and snakes) employing large character sets have focused on osteology. Soft anatomical traits bearing on this problem have usually been considered in small subsets. Here, a comprehensive phylogenetic analysis of squamate soft anatomy is attempted. 126 informative characters are assessed for 23 squamate lineages, representing snakes, amphisbaenians, dibamids, and all the traditionally recognized ‘families’ of lizards. The traditionally recognized groupings Iguania, Scleroglossa, Gekkota, Scincomorpha, Anguimorpha and Varanoidea are corroborated in this analysis. More controversial taxa are resolved as follows. Xantusiids, amphisbaenians and dibamids cluster with gekkotans, and snakes are strongly allied with anguimorphs in general, and varanids in particular. Nearly all these clades are congruent with those found in a recent comprehensive osteological analysis; the strong support for snake‐varanid relationships found in both studies is particularly notable. This congruence is surprising given that previous studies of soft anatomy tended to give differing and often heterodox results. These previous results can be attributed to overrepresentation of misleading characters in small isolated data sets. Such misleading signals are minimized when data sets are combined. For instance, the snake‐varanid clade is contradicted by many characters, and analyses of particular organ systems therefore give differing results. However, characters that are incongruent with the snake‐varanid clade also disagree with each other (diffuse homoplasy), rather than forming coherent support for some particular alternative clade (concerted homoplasy). In a combined analysis these incongruent but diffuse characters cancel each other out to leave a very strong (and orthodox) phylogenetic signal. These results underscore the view that the raw amount of homoplasy — as revealed by consistency and retention indices — is not the only determinant of phylogenetic signal; the distribution of that homoplasy is also important. Thus, questioning a phylogenetic hypothesis (e.g. the snake‐varanid clade) by identifying numerous conflicting characters is insufficient — the structure of the conflicting characters should be assessed in a rigorous phylogenetic analysis.  相似文献   

3.
Squamate reptiles (lizards and snakes) are one of the most diverse groups of terrestrial vertebrates. Recent molecular analyses have suggested a very different squamate phylogeny relative to morphological hypotheses, but many aspects remain uncertain from molecular data. Here, we analyse higher-level squamate phylogeny with a molecular dataset of unprecedented size, including 161 squamate species for up to 44 nuclear genes each (33 717 base pairs), using both concatenated and species-tree methods for the first time. Our results strongly resolve most squamate relationships and reveal some surprising results. In contrast to most other recent studies, we find that dibamids and gekkotans are together the sister group to all other squamates. Remarkably, we find that the distinctive scolecophidians (blind snakes) are paraphyletic with respect to other snakes, suggesting that snakes were primitively burrowers and subsequently re-invaded surface habitats. Finally, we find that some clades remain poorly supported, despite our extensive data. Our analyses show that weakly supported clades are associated with relatively short branches for which individual genes often show conflicting relationships. These latter results have important implications for all studies that attempt to resolve phylogenies with large-scale phylogenomic datasets.  相似文献   

4.
Du WG  Ye H  Zhao B  Pizzatto L  Ji X  Shine R 《PloS one》2011,6(12):e29027
New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying.  相似文献   

5.
Huehuecuetzpalli mixtecus gen. et sp. nov. is characterized by a combination of characters unlike those of any of the previously described Late Jurassic or Early Cretaceous lizards. It has most of the synapomorphies common to modern squamates, but still retains primitive features rare in living taxa. Autapomorphic characters include an anteroposteriorly elongated premaxilla that results in the elongation of the snout and the apparent retraction of the external nares. A small rounded postfrontal and a parietal foramen on the frontoparietal suture suggest affinities with iguanians, but the retention of divided premaxillae, amphicoelous vertebrae, thoracolumbar intercentra, entepicondylar foramen, and a second distal tarsal supports the hypothesis that Huehuecuetzpalli has a more basal position relative to the extant squamates. Although its appearance is late in the fossil record of lizards, Huehuecuetzpalli is the first report of a basal squamate. It provides important information on early transformation of characters in lizard evolution. Many primitive characters present in some modern squamates are usually explained by paedomorphosis; however, these characters are common in early lizards suggesting that derived states may have been fixed later in lizard evolution. If Huehuecuetzpalli is an iguanian, then it would be the earliest known representative of this lineage and extends their fossil record into the Albian. This paper presents an extensive review of the characters and character states used in previously published cladistic analyses of the Squamata.  相似文献   

6.
Squamate reptiles (lizards, snakes, amphisbaenians) number approximately 8200 living species and are a major component of the world's terrestrial vertebrate diversity. Recent molecular phylogenies based on protein-coding nuclear genes have challenged the classical, morphology-based concept of squamate relationships, requiring new classifications, and drawing new evolutionary and biogeographic hypotheses. Even the key and long-held concept of a dichotomy between iguanians (~1470 sp.) and scleroglossans (all other squamates) has been refuted because molecular trees place iguanians in a highly nested position. Together with snakes and anguimorphs, iguanians form a clade – Toxicofera – characterized by the presence of toxin secreting oral glands and demonstrating a single early origin of venom in squamates. Consequently, neither the varanid lizards nor burrowing lineages such as amphisbaenians or dibamid lizards are the closest relative of snakes. The squamate timetree shows that most major groups diversified in the Jurassic and Cretaceous, 200–66 million years (Myr) ago. In contrast, five of the six families of amphisbaenians arose during the early Cenozoic, ~60–40 Myr ago, and oceanic dispersal on floating islands apparently played a significant role in their distribution on both sides of the Atlantic Ocean. Among snakes, molecular data support the basic division between the small fossorial scolecophidians (~370 sp.) and the alethinophidians (all other snakes, ~2700 sp.). They show that the alethinophidians were primitively macrostomatan and that this condition was secondarily lost by burrowing lineages. The diversification of alethinophidians resulted from a mid-Cretaceous vicariant event, the separation of South America from Africa, giving rise to Amerophidia (aniliids and tropidophiids) and Afrophidia (all other alethinophidians). Finally, molecular phylogenies have made it possible to draw a detailed evolutionary history of venom among advanced snakes (Caenophidia), a key functional innovation underlying their radiation (~2500 sp.). To cite this article: N. Vidal, S.B. Hedges, C. R. Biologies 332 (2009).  相似文献   

7.
To investigate the affinities of snakes, amphisbaenians and dibamids, the phylogenetic relationships among the major lineages (families) of extinct and extant squamates are assessed through a combined analysis of 248 osteological, 133 soft anatomical, and 18 ecological traits. The osteological data set represents a revision of previous data, taking into account recent criticism; the ecological data set is new. In addition, potentially critical fossil taxa (polyglyphanodontids and macrocephalosaurs) are included for the first time. The osteological and soft anatomical data sets each place snakes within anguimorphs, with dibamids and amphisbaenians near gekkotans. The putative primitive fossil amphisbaenian Sineoamphisbaena groups with macrocephalosaurs and polyglyphanodontids, together the sister group to scleroglossans. All three data sets are congruent, and these results are reinforced by combined analyses. In these, as in the osteological analyses, snakes are nested within marine lizards. However, exclusion of fossil taxa from the osteological data set results in a ‘limbless clade’ consisting of snakes, amphisbaenians and dibamids, and introduces significant conflict between osteology and soft anatomy. Also, deletion tests and character weighting reveal that the signal in the reduced osteological data set is internally contradictory. These results increase confidence in the arrangement supported by the all-taxon osteological, the soft anatomical, and the combined data, and suggest that exclusion of fossils confounds the signal in the osteological data set. Finally, the morphological data support the nesting of snakes within marine lizards, and thus a marine origin of snakes. This result still holds when relationships between living forms are constrained to the topology suggested by molecular sequences: if marine lizards are allowed to ‘float’ within this molecular framework, they form the stem group to snakes, and do not group with varanids as previously suggested.See also Electronic Supplement at: http://www.senckenberg.de/odes/05-04.htm.  相似文献   

8.
Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.  相似文献   

9.
Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes.  相似文献   

10.
R. Shine 《Oecologia》1987,71(4):608-612
Summary Why are viviparous squamate reptiles more common in cold climates, and oviparous ones in warmer areas? The usual explanation is that (1) oviparous squamates cannot reproduce successfully in cold areas because soil temperatures are too low for embryonic development; and (2) viviparous squamates experience lower survivorship or reproductive success than oviparous taxa in warmer areas. These hypotheses suggest that the boundaries of geographic distributions of congeneric oviparous and viviparous squamates should be predictable from data on thermal tolerances of embryos, and estimated temperatures of soils and gravid female reptiles throughout the potential geographic range of the taxon. In large venomous Australian snakes of the genus Pseudechis, distributional boundaries of oviparous and viviparous taxa can be accurately predicted from such data. This predictive ability, if substantiated by studies of other reproductively biomodal squamate taxa, would support the putative role of reproductive mode as a direct determinant of reptilian geographic distributions.  相似文献   

11.
The chemical senses are crucial for squamates (lizards and snakes). The extent to which squamates utilize their chemosensory system, however, varies greatly among taxa and species’ foraging strategies, and played an influential role in squamate evolution. In lizards, ‘Scleroglossa’ evolved a state where species use chemical cues to search for food (active foragers), whereas ‘Iguania’ retained the use of vision to hunt prey (ambush foragers). However, such strict dichotomy is flawed as shifts in foraging modes have occurred in all clades. Here, we attempted to disentangle effects of foraging ecology from phylogenetic trait conservatism as leading cause of the disparity in chemosensory investment among squamates. To do so, we used species’ tongue‐flick rate (TFR) in the absence of ecological relevant chemical stimuli as a proxy for its fundamental level of chemosensory investigation, that is baseline TFR. Based on literature data of nearly 100 species and using phylogenetic comparative methods, we tested whether and how foraging mode and diet affect baseline TFR. Our results show that baseline TFR is higher in active than ambush foragers. Although baseline TFRs appear phylogenetically stable in some lizard taxa, that is a consequence of concordant stability of foraging mode: when foraging mode shifts within taxa, so does baseline TFR. Also, baseline TFR is a good predictor of prey chemical discriminatory ability, as we established a strong positive relationship between baseline TFR and TFR in response to prey. Baseline TFR is unrelated to diet. Essentially, foraging mode, not phylogenetic relatedness, drives convergent evolution of similar levels of squamate chemosensory investigation.  相似文献   

12.
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.  相似文献   

13.
Squamate phylogeny and the relationships of snakes and mosasauroids   总被引:1,自引:0,他引:1  
Cladistic analysis of extant and fossil squamates (95 characters, 26 taxa) finds the fossil squamate, Coniasaurus Owen, 1850, to be the sister-group of the Mosasauroidea (mosasaurs and aigialosaurs). This clade is supported in all 18 shortest cladograms (464 steps; CI 0.677; HI 0.772) by nine characters of the dermatocranium, maxilla, and mandible. A Strict Consensus Tree of the 18 shortest trees collapses to a basal polytomy for most major squamate clades including the clade (Coniasaurus, Mosasauroidea). A Majority Rule Consensus Tree shows that, in 12 of 18 shortest cladograms, the clade Coniasaurus- Mosasauroidea is the sister-group to snakes (Scolecophidia (Alethinophidia, Dinilysia); this entire clade, referred to as the Pythonomorpha ([[Scolecophidia [Alethinophidia, Dinilysia]], [Coniasaurus, Mosasauroidea]]) is the sister-group to all other scleroglossans. Pythonomorpha is supported in these 12 cladograms by nine characters related to the lower jaw and cranial kinesis. In 6 of 18 shortest cladograms, snakes are the sister-group to the clade (Amphisbaenia (Dibamidae (Gekkonoidea, Eublepharidae))). None of the cladograms support the hypothesis that coniasaurs and mosasauroids are derived varanoid anguimorphs. Two additional analyses were conducted: (1) manipulation and movement of problematic squamate clades while constraining ‘accepted’ relationships; (2) additional cladistic analyses beginning with extant taxa, and sequentially adding fossil taxa. From Test I, at 467 steps, Pythonomorpha can be the sister-group to the Anguimorpha, Scincomorpha, ‘scinco-gekkonomorpha’ [scincomorphs, gekkotans, and amphibaenids-dibamids]. At 471 steps Pythonomorpha can be placed within Varanoidea. Treating only mosasauroids and coniasaurs as a monophyletic group: 469 steps, mosasauroids and coniasaurs as sister-group to Anguimorpha; 479 steps, mosasauroids and coniasaurs nested within Varanoidea. Test II finds snakes to nest within Anguimorpha in a data set of only Mosasauroidea + Extant Squamates; the sistergroup to snakes + anugimorphs is (Amphisbaenia (Dibarnidae (Gekkonoidea, Eublepharidae))). No one particular taxon is identified as a keystone taxon in this analysis, though it appears truc that fossil taxa significantly alter the structure of squamate phylogenetic trees.  相似文献   

14.
Are geckos olfactory specialists?   总被引:1,自引:0,他引:1  
Kurt  Schwenk 《Journal of Zoology》1993,229(2):289-302
Gekkonid lizards are shown to have well-developed nasal chemical senses. It is argued that they are unique among squamates so far studied in the degree of their olfactory (as opposed to vomeronasal) development. This contention is supported by evidence from the brain, nasal capsule, tongue, and experimental studies of behaviour. Limited evidence suggests that olfaction functions in food-finding and predator detection; vomerolfaction during investigation of novel stimuli and in reproduction. The conception of gekkonids as members of a 'visual Ascalabota' is not supported by these findings. Olfactory specialization makes geckos ideal subjects for tests of the Cowles and Phelan hypothesis of olfactory function and suggests that they might be better subjects than snakes for future studies of dual olfactory form, function and evolution in a nonmammalian lineage.  相似文献   

15.
At the feet of the dinosaurs: the early history and radiation of lizards   总被引:3,自引:0,他引:3  
Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages--most notably those relating to the acquisition of squamate skull kinesis--remain unclear.  相似文献   

16.
Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.  相似文献   

17.
Facultative parthenogenesis (FP)—asexual reproduction by bisexual species—has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes—the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted.  相似文献   

18.
19.
Reconstruction artifacts are a serious hindrance to the elucidation of phylogenetic relationships and a number of methods have been devised to alleviate them. Previous studies have demonstrated a striking disparity in the evolutionary rates of the mitochondrial (mt) genomes of squamate reptiles (lizards, worm lizards and snakes) and the reconstruction artifacts that may arise from this. Here, to examine basal squamate relationships, we have added the mt genome of the blind skink Dibamus novaeguineae to the mitogenomic dataset and applied different models for resolving the squamate tree. Categorical models were found to be less susceptible to artifacts than were the commonly used noncategorical phylogenetic models GTR and mtREV. The application of different treatments to the data showed that the removal of the fastest evolving sites in snakes improved phylogenetic signal in the dataset. Basal divergences remained, nevertheless, poorly resolved. The proportion of both fast-evolving and conserved sites in the squamate mt genomes relative to sites with intermediate rates of evolution suggests rapid early divergences among squamate taxa and at least partly explains the short internal relative to external branches in the squamate tree. Thus, mt and nuclear trees may never reach full agreement because of the short branches characterizing these divergences.  相似文献   

20.
A mitogenomic study on the phylogenetic position of snakes   总被引:2,自引:0,他引:2  
Phylogenetic relationships of squamates (lizards, amphisbaenians and snakes) have received considerable attention, although no consensus has been reached concerning some basal divergences. This paper focuses on the Serpentes (snakes), whose phylogenetic position within the Squamata remains uncertain despite a number of morphological and molecular studies. Some mitogenomic studies have suggested a sister-group relationship between snakes and varanid lizards, while other studies have identified snakes and lizards as sister groups. However, recent studies using nuclear data have presented a different scenario, with snakes being more closely related to anguimorph and iguanian lizards. In this mitogenomic study we have examined the above hypotheses with the inclusion of amphisbaenians, one gekkotan and one acrodont lizard, taxa not represented in previous mitogenomic studies. To this end we have also extended the representation of snakes by sequencing five additional snake genomes: two scolecophidians ( Ramphotyphlops australis and Typhlops mirus ) two henophidians ( Eunectes notaeus and Boa constrictor ) and one caenophidian ( Elaphe guttata ). The phylogenetic analysis recovered snakes and amphisbaenians as sister groups, thereby differing from previous hypotheses. In addition to a discussion on previous morphological and molecular studies in light of the results presented here, the current study also provides some details regarding features of the new snake mitochondrial genomes described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号