首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

2.
3.
The present study aimed to investigate the membrane stabilizing effect of Thymoquinone (TQ) on cell surface glycoconjugates and cytokeratin expression against DMBA induced hamster buccal pouch carcinogenesis. 0.5% DMBA painting (three times per week) in hamster buccal pouches for 14 weeks resulted in the formation of well developed oral squamous cell carcinoma. We observed 100% tumor formation with marked abnormalities of glycoconjugates status in tumor bearing hamsters as compared to control animals. Oral administration of TQ at a dose of 30 mg/kg body weight, to DMBA painted hamsters on alternate days for 14 weeks, reduced the tumor formation as well as protected the levels of cell surface glycoconjugates in DMBA painted hamsters. The present study thus suggests that TQ has potent chemopreventive efficacy as well as protected the abnormalities on cell surface glycoconjugates during DMBA induced hamster buccal pouch carcinogenesis.  相似文献   

4.
Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14) and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6+ and K8+/K14+ putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover, we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation in genetic studies of mouse mammary development.  相似文献   

5.
Summary The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

6.
The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

7.
Cytokeratin expression in differentiating cultured foreskin keratinocytes was studied using chain-specific anti-cytokeratin monoclonal antibodies directed against cytokeratins 4, 8, 10, 13, 18, and 19, respectively. Keratinocytes were cultured at low Ca2+ concentration (0.06 mM) to repress differentiation. At confluency, the cells were switched to high Ca2+ concentration (1.6 mM) to induce differentiation. Cells were harvested 0, 3, 8, 16, 24, 48, and 72 h after the switch. Keratinocytes cultured throughout at high Ca2+ concentration were also harvested. Immunoblots of cytokeratin preparations isolated from these cultures showed that cytokeratins 4, 13, and 19 were not present in nondifferentiating keratinocytes but could be detected from about 16 h after the Ca2+ switch. Immunohistochemical studies were performed on frozen sections of cell sheets incubated with anti-cytokeratin and anti-vimentin. Expression of cytokeratins 4, 13, and 19 was seen in superficial cells. Cytokeratin 10 was locally present in suprabasal and superficial cells. Vimentin was present in 40-70% of the basal cells and in only a few differentiating keratinocytes. Expression of cytokeratins 8 and 18 could not be detected. The same antibodies were also used to stain sections from fetal (15, 20, and 29 weeks), newborn (40 weeks), and mature (5 and 75 years) epidermis. In the 15-week-old epidermis, basal cells were positive for cytokeratins 8 and 19 and locally for cytokeratin 4; intermediate cells expressed cytokeratins 4, 10, 13, and 19; and the periderm contained cytokeratins 4, 8, 13, 18, and 19. In the 20-week-old epidermis, cytokeratin 4 had disappeared from the basal cell layer and cytokeratin 19 was present only locally; in the intermediate cell layer, cytokeratins 4 and 19 had disappeared; and in the periderm, the expression of the cytokeratins studied was the same as that in the 15-week-old epidermis. The basal cells of the 29-week-old fetal epidermis, the newborn epidermis, and the mature epidermis are negative with all antibodies tested, except for some scattered cells in the fetal and newborn skin, presumably Merkel cells, that were positive for cytokeratins 8, 18, and 19. Suprabasal cells in all specimens were positive only for cytokeratin 10. With respect to the cytokeratins studied, our results show that cultured differentiating keratinocytes resemble the suprabasal cells of early fetal epidermis. Basal cells of cultured keratinocytes resemble the basal cells of late fetal, newborn, and adult epidermis and therefore support previous observations.  相似文献   

8.
9.
The source of DNA of adequate quality and quantity is an important consideration in genome analysis. In many animal and livestock species, easy access to DNA will facilitate the rapid and reliable genotyping of a large number of individual individuals. Here, we describe the use, for the first time, of buccal cells from non-human mammalian species as a source of DNA template for PCR and restriction analysis. The buccal cells from the pig, cow and human, were used to amplify PCR fragments that were scanned SNPs and for comparative genome analysis. The work indicates that buccal cells are also adequate sources of DNA for genome analysis of animals that have been identified as priorities in comparative genomics.  相似文献   

10.
Expression patterns of intermediate filament proteins have been studied during early mouse embryo development. For this purpose, pre-implantation embryos at different stages of development after in vitro fertilization were studied using antibodies to cytokeratins, vimentin and lamins, using the indirect immunofluorescence assay. The levels of expression were quantitated and localization of the protein constituents was assessed by means of confocal scanning laser microscopy. Our studies showed that, although the embryos grew in culture, vimentin could not be detected in a filamentous organization. Immunofluorescence for cytokeratins was only positive from the 8-cell stage onwards. In the morula stage an increased level of cytokeratin expression was observed with a transitional staining pattern, combining a filamentous and a diffuse occurrence. In the blastocyst stages profound cytokeratin filaments were seen in trophoblast cells but not in the inner cell mass. When the cytokeratin subtypes were analysed separately, it became apparent that expression levels of cytokeratins 8 and 18 increased gradually up to a filamentous pattern in the blastocyst stage. Cytokeratins 7 and 19, although elevated in the latter stage and showing a filamentous distribution, were not found as prominently as cytokeratins 8 and 18. A-type as well as B-type lamins could be detected in all developmental stages examined, as a faintly reactive nuclear lamina. In blastocysts both lamin types were detected in trophoblast as well as in inner cell mass.  相似文献   

11.
Background aimsAn accurate and reliable assessment of bone marrow engraftment (BME) after hematopoietic stem cell transplantation (HSCT) is based on the ability to distinguish between recipient and donor cells at selected polymorphic short tandem repeat (STR) DNA loci. Buccal cells are an important source of DNA for determining the recipient's constitutional genotype, particularly in patients transplanted before the STR evaluation.MethodsGenomic DNA was extracted from the recipient buccal cells and from isolated CD3+ (T-cell lymphocyte) and CD33+ (myelocyte) cells after HSCT. BME analysis was performed using a STR-based polymerase chain reaction amplification method followed by fragment-size analysis for assessing the recipient-derived or donor-derived composition of cell lineage-specific peripheral blood DNA.ResultsWe identified three cases of complete buccal epithelial cell engraftment after HSCT detected by BME analysis, potentially leading to misinterpretation of testing results if these cells were used as the sole source for determining the recipient's genotype.ConclusionsThese cases suggest that complete engraftment of buccal epithelial cells may be a common finding in patients receiving HSCT, drawing attention to important issues such as the type of samples used for determining a patient's constitutional genotype that may confound testing results. This study also highlights the need for careful interpretation of the BME testing results in the context of the clinical findings.  相似文献   

12.
Cytokeratin expression in squamous metaplasia of the human uterine cervix   总被引:16,自引:0,他引:16  
The expression of cytokeratin polypeptides in squamous metaplasia of the human uterine cervix was investigated by immunocytochemical labeling with polypeptide-specific antibodies against cytokeratins. Immunofluorescence microscopic examination of cervical tissues using various monoclonal antibodies indicated that squamous cervical metaplasia expresses a unique set of cytokeratin polypeptides, this being distinctively different from that expressed by all of the normal epithelial elements of the exo- and endocervix. The development of metaplastic foci was accompanied by the expression of cytokeratin polypeptide no. 13, which is commonly detected in stratified epithelia, and by a reduction in the level of polypeptide no. 18, which is typical of simple epithelia. The 40-kilodalton cytokeratin (no. 19) described by Moll et al., which is abundant in the columnar and reserve cells of the endocervix, was found throughout the metaplastic lesions. Only in 'well-differentiated' metaplasias did we detect polarity of cytokeratin expression reminiscent of the staining patterns in the exocervix. This was manifested by the exclusive labeling of the basal cell layer(s) with antibodies KB 8.37 and KM 4.62, which stain the basal cells of the exocervix. Furthermore, a comparison of cervical metaplasia with squamous areas occurring within endometrial adenocarcinomas pointed to a close similarity in the cytokeratin expression of the two. We discuss the use of cytokeratins as specific markers of squamous differentiation, the relationships between squamous metaplasia and cervical neoplasia, and the involvement of reserve cells in the metaplastic process.  相似文献   

13.
14.
Merkel cells are special neurosecretory cells which, in adult human skin, are usually very scarce. By immunofluorescence microscopy using antibodies to human cytokeratin polypeptide no. 18, we localized distinct non-keratinocyte cells in the glandular ridges of human fetal and adult plantar epidermis. Using electron and immunofluorescence microscopy, these cells were identified as Merkel cells containing typical neurosecretory granules as well as bundles of intermediate-sized filaments and desmosomes. Two-dimensional gel electrophoresis of the cytoskeletal fractions of microdissected epidermal preparations highly enriched in Merkel cells indicated the presence of cytokeratin polypeptides nos. 8, 18 and 19 which are typical of diverse simple epithelia of the human body. Double immunofluorescence microscopy showed that these human Merkel cells contain neither neurofilaments nor vimentin filaments. In human fetuses of 18-24 weeks of age, conspicuously high concentrations of Merkel cells, reaching a density of approximately 1,700 Merkel cells/mm2 skin, were found in the glandular ridges of plantar skin. The concentration decreased considerably at newborn and adult stages. Thin cell processes (up to 20 microns long) were observed in many fetal epidermal Merkel cells. In addition, we detected isolated Merkel cells deeper in the dermis (i.e. at distances of, at most, 100 microns from the epidermis) in fetal and newborn plantar skin. Our results show that Merkel cells are true epithelial cells which, however, differ profoundly from epidermal keratinocytes in their cytokeratin expression. The findings are discussed in relation to the much disputed question of the origin of Merkel cells. The present data speak against the immigration of Merkel cells from the neural crest, but rather suggest that they originate from epithelial cells of the skin, although most probably not from differentiated keratinocytes.  相似文献   

15.
Bone marrow stromal cells (BMSCs) are a rich source of osteogenic progenitor cells. A fundamental question is whether systemically transplanted BMSCs participate in bone regeneration. Luciferase and GFP double-labeled BMSCs were transplanted into irradiated mice. Five weeks after transplantation, artificial bone wounds were created in the mandibles and calvaria of the recipients. Animals were sacrificed at weeks 2, 4, and 6 after surgery and the expressions of luciferase and GFP were determined using Xenogen IVIS Imaging System, immunohistochemical staining and RT-PCR. The results demonstrated that transplanted BMSCs can be detected in wound sites as early as 2 weeks and lasted the whole experimental period. Luciferase expression peaked at 2 weeks after surgery and decreased thereafter, exhibiting a similar expression pattern as that of BSP, while GFP expression was relatively stable during the experimental period. In conclusion, BMSCs can migrate to bone wound sites and participate in bone regeneration in orocraniofacial region.  相似文献   

16.
Three-dimensional (3D) collagen gels provide a stable matrix in which isolated regenerating ganglia from leech and snail can be maintained for studies of the molecular and cellular mechanisms underlying the regenerative process. Segmental ganglia from leech, or supraoesophageal, suboesophageal or buccal ganglia from snail were maintained for up to 3 weeks in 3D matrices of mammalian Type I collagen. The collagen matrix supports the regenerative outgrowth of axon tracts as well as the migration of microglial cells, important elements in the repair process. Proteins or soluble factors or target tissue may be added to the basic collagen matrix to manipulate the environment of the regenerating tissue. We describe techniques for immunostaining of regenerating axons and microglial cells within the gel matrix in combination with staining of cell nuclei, and the use of intracellular labelling to distinguish axons of identified neurons within the regenerative outgrowth.E.J. Babington and J. Vatanparast contributed equally  相似文献   

17.
We investigated the immunoexpression of the intermediate filament proteins, cytokeratin and desmin, and the morphological changes in the liver of rats during experimental fasciolosis at 4, 7 and 10 weeks post-infection. Rats were infected with 30 Fasciola hepatica metacercariae. Paraffin sections of the liver were stained using H & E, PAS and azan stains. Immunohistochemical reactions were performed using antibodies against cytokeratin and desmin. The experimental F. hepatica infection led to fibrosis and cirrhosis of the liver, and to inflammation of the common bile ducts. The expression of cytokeratin was increased in the epithelial cells of both the liver bile ductules at 4, 7 and 10 weeks post-infection and in the common bile ducts at 7 and 10 weeks post-infection compared to uninfected rats; expression in the common bile ducts was more intense. The myofibroblasts of the liver and smooth myocytes of the interlobular bile ducts and common bile ducts, showed a slight increase in desmin expression compared to the uninfected rats. The increased expression of cytokeratins in the hyperplastic rat common bile duct epithelium during the biliary phase of fasciolosis at 7 and 10 weeks post-infection may be explained by mechanical irritation by the parasite and an inflammatory reaction in the bile duct epithelium and in periductal fibrous tissue.  相似文献   

18.
Cell sources of liver development   总被引:3,自引:0,他引:3  
The work is devoted to consequent expression of different cell types' protein markers such as vimentin, desmin, cytokeratins 7, 18, 19, stem cell markers CD34 and Bcl-2 at early stages of human prenatal development. Desmin was revealed in sinusoidal liver cells on 3.5-12 weeks of gestation, in mesenchymal cells of ventral mesentery and hepatoblasts on the 4-7 accordingly. During hepatic period of blood formation such desmin positive sinusoidal cells were found to be located close to blood cells. So called "cholangio-" cytokeratins 7 and 19 showed different expression, the first one was found only in cholangiocytes, while cytokeratin 19 existed in hepatoblasts as well until week 15-16 of prenatal development. Mesenchymal cells of ventral mesentery are positive for cytokeratins 18 and 19 even brighter than hepatoblasts in the 4-7 weeks of gestation. Bcl-2 expression was seen in the same periods in most sinusoidal and mesenchymal cells of ventral mesentery. CD34 positive cells are strongly depicted in liver sinusoids from 4th until 9th weeks of gestation, but probably they are not a source of hepatocytes' development in embryonic ontogenesis. Ventral mesentery mesenchyme was negative for this very marker. These results let us suppose that hepatocytes and cholangiocytes may develop from quite different embryonic sources: cholangyocytes grow exceptionally from duodenum epithelial cells, while there is a strong possibility that hepatoblasts formation occurs with participation of mesenchymal cells.  相似文献   

19.
Highly proliferative normal human epidermal keratinocytes (NHK) were isolated from human foreskin biopsies, cultivated in serum-free medium and characterized by flow cytometry. The expression of cytokeratin 19, cytokeratin 14 and vimentin indicated that the suspension contained a high percentage of undifferentiated cells of the basal epidermal layer. The NHK were transfected in vitro with lipid/DNA complexes made of Effectene or Lipofectamine and different reporter genes. The transfection efficiency of Effectene/DNA complexes was 20fold higher compared to Lipofectamine. Transfected keratinocytes continued to grow and developed within 2 weeks a cellular multilayer (3-D culture). Areas of transfected cells were detected within this layer.  相似文献   

20.
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12–14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号