首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A spectrum of eight pharmacologically important secondary compounds, all putatively belonging to the polyketide pathway (hypericin, pseudohypericin, emodin, hyperforin, hyperoside, rutin, quercetin, and quercitrin) were analyzed in several hypericin-producing species of Hypericum by LC–MS/MS. Different organs such as leaves, stems and roots of wild-grown plants of Hypericum hirsutum L., Hypericum maculatum Crantz s. l., Hypericum montanum L., Hypericum tetrapterum Fr. collected in Slovakia and of Hypericum perforatum L. collected in India were examined individually. Highest contents of hypericin, pseudohypericin, and emodin were found in H. montanum, suggesting that there are alternative species to H. perforatum with high pharmaceutical value. Amounts of hyperforin and quercetin were highest in H. perforatum, whereas highest contents of hyperoside and quercitrin were found in H. maculatum. A significant positive correlation between hypericin and pseudohypericin as well as between hypericin and emodin was observed by Kruskal’s multidimensional scaling (MDS), indicating a parallel enhancement of emodin as a common precursor in the biosynthetic pathways of hypericin and pseudohypericin. Furthermore, MDS combined with principal component analysis (PCA) revealed strong correlations in the occurrence of pseudohypericin and emodin, pseudohypericin and quercitrin, hypericin and quercitrin, emodin and quercitrin, hyperoside and quercitrin, rutin and quercetin, and, hyperforin and quercetin. On the other hand, rutin showed a negative correlation with emodin as well as with quercitrin. Furthermore, hierarchical agglomerative cluster analysis (HACA) clustered hypericin and pseudohypericin, grouping emodin at equal distance from both. Considerable infraspecific variability in secondary compound spectrum and load of different populations of H. maculatum from Slovakia underscores the need for detailed studies of genotypic variation and environmental factors in relation to polyketide biosynthesis and accumulation.  相似文献   

2.
The biologically active naphthodianthrones hypericin and pseudohypericin were detected by electrospray ionization mass spectrometry (ESI-MS/MS) in microsamples from the sepals of Hypericum elodes (Hypericaceae) containing the so-called "red glands", i.e. stipitate glands with red-coloured heads. The occurrence of hypericins in the red glands of H. elodes supports the taxonomic position of the section Elodes within the genus Hypericum and provides evidence that the ability of carrying out the biosynthetic pathway leading to the naphthodianthrone compounds, rather than the absolute amounts produced, should be regarded as a chemical marker of the phylogenetically more advanced sections of genus Hypericum. The biologically active phloroglucinol derivatives hyperforin and adhyperforin, so far found only in H. perforatum, were also detected and evidence for their localization in the sepal secretory canals with large lumen, is given.  相似文献   

3.
Investigations have been made to develop an efficient protocol for micropropagation allowing to improve hypericin and pseudohypericin productions in Hypericum perforatum L. in vitro cultures. The role of growth regulator treatments has been particularly studied. Three in vitro culture lines with different morphological characteristics were obtained during H. perforatum micropropagation and referred to shoots, calli and plantlets according to their appearance. Multiplication and callogenesis from apical segments from sterile germinated seedlings were obtained on solid MS/B5 culture medium in the presence of N6-benzyladenine (BA) (0.1-5.0 mg/l BA). Regenerative potential of shoots was assessed on medium supplemented with auxins (0.05-1.0 mg/l), indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA). The main goal of the research was to summarize the influence of plant growth regulators on hypericin and pseudohypericin productions in in vitro cultures of Hypericum. A rapid method for naphtodianthrone quantification was developed. The use of a reversed-phase high performance liquid chromatography (HPLC) method with fluorescence detection was used. Identification of the compounds was confirmed by electrospray ionization-mass spectrometry (ESI-MS) with electrospray in negative ion mode [M-H] . Calli, shoots and plantlets of H. perforatum produced hypericin and pseudohypericin. The concentration range of BA from 0.1 to 2.0 mg/l improved the production of hypericin (25-50 microg/g dry mass (DM)) and pseudohypericin (170-350 microg/g DM) in shoots. In callus cultures, BA (4.0-5.0 mg/l) did not changed hypericin contents (15-20 microg/g DM) but influenced pseudohypericin productions (120-180 microg/g DM). In the presence of auxins (IAA and IBA), Hypericum plantlets produced hypericin (30-100 microg/g DM) and pseudohypericin (120-400 microg/g DM). The presence of IAA did not influence naphtodianthrone productions in plantlets, but IBA decreased hypericin and pseudohypericin amounts in plantlets. The specific accumulation of the naphtodianthrones in in vitro cultures was influenced by phytohormonal supplementation of the medium. Results indicated that the production of hypericin and pseudohypericin could be increased by carefully adapted in vitro cultures. Hypericum in vitro cultures represent promising systems for hypericin and pseudohypericin productions.  相似文献   

4.
Representatives from eight wild populations ofHypericum perforatum L. were collected from Montana and Northern California at flowering, and subsequently analyzed for hypericin and pseudohypericin using HPLC analysis. Total individual plant concentrations in these wild populations were from 0.0003–0.1250% dry weight (DW) hypericin and 0.0019–0.8458% DW pseudohypericin. In general, hypericin concentrations were highest in the plant’s reproductive (flower and bud) tissues, followed by leaf and stem tissues, respectively. Hypericin and pseudohypericin concentrations were positively correlated in all samples, although the relative ratio of hypericin to pseudohypericin varied with site location.  相似文献   

5.
利用傅里叶红外光谱仪和OMINI采样器直接迅速准确地测定金丝桃属(Hypericum L.)9组43种1亚种1变种和三腺金丝桃属(Triadenum Raf)2种植物的红外光谱,结果表明:各分类群(种)的红外光谱具有高度特异性和重现性,这两属及其金丝桃属组间的红外光谱图存在较大的差异,而组内种间红外光谱图的差异较小,同种不同分布区和不同发育时期的叶的红外光谱几无差别;其红外光谱图的变化可以作为这两属植物的分类依据之.这也暗示利用已知的标准红外光谱图库,可以区分和鉴定出这两属或其他属植物的种类.  相似文献   

6.
利用傅里叶红外光谱仪和OMINI采样器直接迅速准确地测定金丝桃属 (Hypericum L.) 9组43种1亚种1变种和三腺金丝桃属(Triadenum Raf.) 2种植物的红外光谱,结果表明:各分类群(种)的红外光谱具有高度特异性和重现性,这两属及其金丝桃属组间的红外光谱图存在较大的差异,而组内种间红外光谱图的差异较小,同种不同分布区和不同发育时期的叶的红外光谱几无差别;其红外光谱图的变化可以作为这两属植物的分类依据之一。这也暗示利用已知的标准红外光谱图库,可以区分和鉴定出这两属或其他属植物的种类。  相似文献   

7.
The secondary metabolite contents and genetic profiles of six Hypericum species (H. barbatum Jacq., H. hirsutum L., H. linarioides Bosse, H. maculatum Crantz, H. rumeliacum Boiss. and H. tetrapterum Fries), collected from different locations in Serbia, have been analyzed. Methanol extracts of the aerial parts of the plants were obtained by accelerated solvent extraction (ASE) at 40 degrees C and 100 bar, and analyzed for five pharmacologically important standard constituents (hyperoside, quercitrin, pseudohypericin, hyperforin and hypericin) by LC-MS/MS. The highest content of hypericin and pseudohypericin was observed in the H. barbatum extract, while the highest content of hyperforin and quercitrin was found in the H. tetrapterum extract and the highest content of hyperoside in the H. maculatum extract. A literature survey shows that the above six Hypericum species, with the exception of H. maculatum, have not been previously genetically profiled. In order to correlate the chemical constituents of the species under investigation with their genetic factors, genetic profiling of these species was undertaken using the random amplification of polymorphic DNA (RAPD) and single sequence repeat (SSR) profiles of the above selected plants. Among the 52 random primers used for the initial screening, only 10 yielded polymorphic RAPD profiles. A total of 111 polymorphic markers were generated using these primers. The SSR analysis shows that 8 out of the 10 primers used were polymorphic. The correlation among the species under investigation using the two genetic markers was performed using Jaccuard's coefficients of similarity and a high correlation (r=0.99) was obtained. The main conclusion from the above data is that there exists a stronger correlation for secondary metabolite contents with RAPD data than with SSR data among the six Hypericum species from Serbia.  相似文献   

8.
Shoot organ cultures were established from callus derived from anthers of Hypericum perforatum flowers and the effect of elicitors on hypericin and pseudohypericin production in shoot organ cultures was investigated. Mannan stimulated pseudohypericin production up to four fold (0.82 mg/g dry wt) and hypericin production up to two fold (0.04 mg/g dry wt.) beta-1,3-glucan and pectin slightly stimulated pseudohypericin production (ca. two fold), but had no effect on hypericin production. On the other hand, yeast extract showed no stimulatory effect, on either hypericin or pseudohypericin production.  相似文献   

9.
Hypericin and hypericin-like substances are considered the main active compounds in Hypericum perforatum L. (Hypericaceae). In this work pseudohypericin and hypericin of H. perforatum collected in Lithuania were quantified. Studies on accumulation dynamics and between-accession variation of the contents of these secondary metabolites were carried out by high performance liquid chromatography (HPLC). The data were statistically processed with ANOVA and PCA. Significant difference between pseudohypericin and hypericin content in floral budding and full flowering stages was detected. The highest amounts of the secondary metabolites were observed in the flowering stage. The study revealed evident within population variations in H. perforatum. Mean concentrations of pseudohypericin and hypericin among accessions varied from 3.45 to 6.82 mg/g and from 1.17 to 2.59 mg/g, respectively. Accessions of H. perforatum showed remarkable differences in chemical composition depending on the provenance of plants.  相似文献   

10.
Hypericum spp. flowers were collected from different sites of Northern Apennines in Italy and were analysed by HPTLC technique to determine their contents in flavonoids (rutin, hyperosid, quercitrin, isoquercitrin and quercetin) and hypericins (pseudohypericin and hypericin). The H. perforatum and H. richeri composition was evaluated in order to investigate the influence of ecological conditions on secondary metabolites production. The species studied showed some differences in the amounts of investigated metabolites and high variability was observed in populations gathered in different places. No significant effects of environmental factors on active compound production were observed, except for the rutin content which is in positive correlation with the altitude of the growing site. Interesting informations are also given about the morphology of secretory structures found in Hypericum richeri.  相似文献   

11.
Hypericin and pseudohypericin which have been isolated from plants of the Hypericum family are aromatic polycyclic diones. Daniel Meruelo et. al. have reported that hypericin and pseudohypericin showed potent antiretroviral activity including anti-human immunodeficiency virus (1,2). However, the mechanism of these antiretroviral activities has not been clarified. In the course of screening specific inhibitors of protein kinase C we have found that both compounds specifically inhibit protein kinase C with IC50 values 1.7 micrograms/ml and 15 micrograms/ml, respectively, and show antiproliferative activity against mammalian cells. These data suggest that antiretroviral activity of hypericin and pseudohypericin could be attributable to the inhibition of some phosphorylation involved by protein kinase C during viral infection of cells.  相似文献   

12.
Hypericin and pseudohypericin are polycyclic–phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 μmol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.  相似文献   

13.
An HPLC method for the quantitation of hypericin using a new and sensitive amperometric detection is presented. Hypericin was eluted isocratically using a mobile phase consisting of ammonium acetate, methanol and acetonitrile. The oxidation was carried out with a glassy carbon electrode at a potential of + 1.1 V vs. an Ag-AgCl-KCl reference electrode. Under the conditions described, hypericin was separated at a retention time (Rt) of 12 min. Linearity was obtained over the range 0.035-1.30 microg/mL (r = 0.9994). The limit of detection was determined to be 0.010 ng on-column for hypericin. The method was applied to the determination of total hypericin (hypericin, pseudohypericin, protohypericin and protopseudohypericin) in extracts of St. John's wort using hypericin as an external standard. The protoforms were converted into hypericin and pseudohypericin by subjecting the sample to artificial light prior to chromatographic analysis. For the evaluation of total hypericin, the peak areas of pseudohypericin (Rt 3.7 min) and hypericin (Rt 12.0 min) were combined. The relative standard deviation in analysing samples containing Hypericum ranged from 2.5 to 5.4%.  相似文献   

14.
Due to its high hypericin and pseudohypericin in vitro biosynthetic capacity, the Balkan endemic Hypericum rumeliacum was selected as a prospective candidate for long-term preservation of valuable medicinal plant germplasm. Initial cryopreservation experiments were previously conducted based on the successful protocol established and reported for the widely studied H. perforatum. This is the first report on the impact of pre-culture duration on the short- and long-term in vitro recovery of the biosynthetic potential and antioxidant defense system of H. rumeliacum cryopreserved by vitrification. Cryopreservation did not impair the phenolics and flavonoids production of the regenerated plants. Moreover, hypericin and pseudohypericin levels even increased substantially in one of the regenerated lines, reaching yields from 0.107 and 0.752?mg?g?1?DW in the control up to 0.277 and 1.112?mg?g?1?DW for hypericin and pseudohypericin, respectively. However, the physical injury stress of the pre-culture treatment manipulations affected the physiological status of regenerants in a time dependent manner. Within 6?months after thawing, regenerants with the highest oxidative stress after pre-culture, were characterized with an augmentation of antioxidant metabolites such as phenolics, flavonoids, glutathione and ascorbic acid as well as increased antioxidant enzymatic activities in comparison with both the non-frozen control and the regenerants with the lowest pre-culture oxidative stress. Then, after 18?months of recovery, the same first H. rumeliacum group displayed a marked drop of enzymatic antioxidant activity as compared with the other groups of plants. Further research is needed to target oxidative stress alleviation to optimize H. rumeliacum cryopreservation protocol.  相似文献   

15.
Hypericin and pseudohypericin, bioactive constituents in St. John's Wort (Hypericum perforatum), have been determined in the soft tops of the plant that are most likely to be browsed by foraging livestock. In two consecutive seasons, the hypericin/pseudohypericin concentration in a broad leaf biotype varied from a winter minimum of less than 100 ppm to a summer maximum approaching 3000 ppm. In contrast the narrow leaf biotype increased from similar winter values to summer maxima approaching 5000 ppm. The latter biotype was slower in returning to low levels of hypericin/pseudohypericin.  相似文献   

16.
We studied the effects of elicitors, such as mannan, beta-1,3-glucan, ancymidol, and cork crumbs, on morphogenetic and biosynthetic potencies of shoot cultures of Hypericum perforatum L. In the presence of these elicitors, different morphogenetic structures of H. perforatum callus cultures were formed. A correlation was found between the morphogenetic processes and induction of hypericin and pseudohypericin biosynthesis in the callus cultures.  相似文献   

17.
Hypericum perforatum is a well known medicinal plant. The main pharmacological properties are due to the presence of naphtodianthrones such as hypericin and pseudohypericin. Unfortunately the levels of these compounds vary under different environmental conditions. Elicitation of in vitro cultures is a useful approach to enhance and extend production of desirable products. Therefore, the effects of salicylic acid were characterized on different explants of H. perforatum L. (cells, calli and shoots) cultured in vitro. It appears at first that salicylic acid did not affect growth and development of these explants. In addition, the production of both hypericin and pseudohypericin has doubled in elicited cell suspension cultures but not in the two other cultures. Furthermore, phenylpropanoids that are among the most frequently observed metabolites affected upon treatment of in vitro culture material with elicitors, were produced and the enzymatic activities of phenylalanine ammonia lyase and of chalcone isomerase were stimulated upon elicitation. These effects were dependant of the type of in vitro culture, the concentration of salicylic acid and the duration post-elicitation. The H. perforatum cells were globally more sensitive to salicylic acid elicitation when maintained in an undifferentiated state and particularly in cell suspension cultures. In the absence of glands considered as the sites of naphtodianthrones biosynthesis, cells and calli were capable of producing these compounds. This implies that salicylic acid could act at biosynthesis level but not for the accumulation of both hypericin and pseudohypericin. Consequently, the regulation of this process is more complex than cited in the literature involving the responsibility of only Hyp-1 gene, encoding a hypericin biosynthetic enzyme, cloned and characterized from H. perforatum.  相似文献   

18.
Of numerous species belonging to the medicinally important genus Hypericum, only H. perforatum L. and H. maculatum Crantz grow widely in Estonia. A comparative biochemical systematics study of hypericins, hyperforins and other phenolics within Hypericum spp. growing in Estonia was performed. For comprehensive metabolomic investigation, 42 samples of H. perforatum and 16 samples of aerial parts of H. maculatum were collected in two consecutive years from various locations; methanolic extracts were prepared from airdried leaves and flowers. The concentrations of a quinic acid derivative, caffeic acid glucoside, vanillic acid glucoside, neochlorogenic acid, chlorogenic acid, catechin, epicatechin, myricetin glucoside, hyperoside, isoquercitrin, rutin, quercetin pentoside, quercitrin, kaempferol glucoside, kaempferol rutinoside, quercetin, hyperforin, adhyperforin, protopseudohypericin, pseudohypericin, and hypericin were determined by LC-DAD-MS/MS. All the aforementioned compounds were detected in both species, although some at very different levels – H. maculatum contained rutin and hyperforins only in trace amounts and overall tended to contain more phenolic compounds. The level of total hypericins was the same for both species. These results constitute a further contribution to the systematic knowledge about the Hypericum spp. Results of principal component analysis (PCA) demonstrated distinct between-years and between-species diversity in the chemical composition of the plants studied. Between-years diversity in Hypericum spp. has not been addressed before.  相似文献   

19.
The content of hypericins (hypericin and pseudohypericin), hyperforin, and flavonoids (rutin, hyperoside, quercitrin, and quercetin) and genetic profiles of eight accessions of Hypericum perforatum L., collected from different locations in India, have been determined. The secondary metabolite content was determined using a highly selective LC/MS/MS method. Pearson and Spearman's correlation coefficient were used to investigate the relationships between the secondary metabolites and a significant positive correlation was found between hypericin and pseudohypericin contents. Genetic profiling was undertaken using the random amplification of polymorphic DNA (RAPD) and single sequence repeat (SSR) methods. Among the 49 random primers used for the initial screening, only nine yielded polymorphic RAPD profiles. The SSR analysis shows that seven out of the 11 primers were polymorphic. There exists only a partial correlation between the chemical content and genetic profiling data among the accessions under study.  相似文献   

20.
Onoue S  Seto Y  Ochi M  Inoue R  Ito H  Hatano T  Yamada S 《Phytochemistry》2011,72(14-15):1814-1820
Extracts from St. John's Wort (SJW: Hypericum perforatum) have been used for the treatment of mild-to-moderate depression. In spite of the high therapeutic potential, orally administered SJW sometimes causes phototoxic skin responses. As such, the present study aimed to clarify the phototoxic mechanisms and to identify the major phototoxins of SJW extract. Photobiochemical properties of SJW extract and 19 known constituents were characterized with focus on generation of reactive oxygen species (ROS), lipid peroxidation, and DNA photocleavage, which are indicative of photosensitive, photoirritant, and photogenotoxic potentials, respectively. ROS assay revealed the photoreactivity of SJW extract and some SJW ingredients as evidenced by type I and/or II photochemical reactions under light exposure. Not all the ROS-generating constituents caused photosensitized peroxidation of linoleic acid and photodynamic cleavage of plasmid DNA, and only hypericin, pseudohypericin, and hyperforin exhibited in vitro photoirritant potential. Concomitant UV exposure of quercitrin, an SJW component with potent UV/Vis absorption, with hyperforin resulted in significant attenuation of photodynamic generation of singlet oxygen from hyperforin, but not with hypericin. In conclusion, our results suggested that hypericin, pseudohypericin, and hyperforin might be responsible for the in vitro phototoxic effects of SJW extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号