首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear partners of Bcl-2: Bax and PML   总被引:2,自引:0,他引:2  
A milestone in understanding the functioning of the antiapoptotic cytoplasmic protein Bcl-2 was the discovery that Bcl-2 was capable of heterodimerising with the pro-apoptotic protein Bax at the mitochondrial level, creating a delicate balance of cell death preventing and promoting regulators. In recent years we identified substantial pools of Bcl-2 and Bax in nucleoplasm as well. We demonstrated that nuclear Bcl-2 controls cellular proliferation and, in an indirect manner, apoptosis. Sound support for functional presence of nuclear Bcl-2 and Bax would be evidence of Bcl-2-Bax binding in this compartment. Here we show by immunoprecipitation-using a battery of commercially available, monoclonal antibodies-that Bcl-2 binds Bax in nuclei of human breast cancer cells. Interestingly, findings by others pointed at an interaction between the product of the promyelocytic leukemia gene, the PML protein, and Bax. PML plays a part in cell proliferation and apoptosis, a rather similar role we assigned to nuclear Bcl-2. Nuclear Bcl-2, but not Bax, was found to immunoprecipitate with nuclear PML. These data show that binding of Bcl-2 with structurally and functionally related proteins extends to the nucleus, emphasizing its pivotal role in Bcl-2-mediated actions.  相似文献   

2.
Homeostasis and development in vertebrates are regulated by cell proliferation, differentiation and death. Permeability of mitochondrial membranes, a decisive feature of apoptosis, is regulated by Bcl-2 family regulators. Protein p53 is able to reduce bcl-2 and promote bax expression. This study focused on the immunohistochemical detection of the expression levels of Bcl-2 family regulators (anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bcl-Xs and Bax), p53, and PCNA as a marker of proliferation, together with the evaluation of the level of apoptosis in human embryos (anlage of limbs, axial skeleton, metanephros, and intestine). Expression of observed proteins was assessed by a three-step immunohistochemistry and evidenced by the double-staining technique. Apoptosis was detected by the TUNEL technique. This study provided circumstantial evidence of the exclusive role of Bcl-2 and Bcl-XL proteins in the inhibition of apoptosis - only rarely were the Bcl-2/ Bcl-XL positive cells stained by TUNEL. The role of pro-apoptotic members of Bcl-2 family remains ambiguous, as TUNEL positive cells are both Bax/Bcl-Xs positive and negative. This study provided substantial evidence that expression patterns of observed proteins are neither fully explainable by "rheostat" theory, nor are the findings obtained from animal model tissue or cell culture commonly applicable to human embryos.  相似文献   

3.
The 26-kDa bcl-2 gene product inhibits apoptosis and cell proliferation. Cleavage of Bcl-2 into a 22-kDa fragment inactivates its anti-apoptotic activity and is a key event in apoptosis. Here, and in recent work, we describe massive 19-kDa Bcl-2 immunoreactivity in non-apoptotic cells, suggesting a link with viability rather than cell death. Loss of 19 kDa Bcl-2 in adriamycin-induced apoptotic cells underlines this. G2/M-phase accumulation of cells by nocodazole-treatment also results in loss of 19 kDa Bcl-2. Next to its well-documented cytoplasmic localization, a substantial pool of Bcl-2 resides in nuclei. Hampered nuclear localization of Bcl-2 leads to a loss of cell cycle repression. This has led us to point at a pivotal role for nuclear Bcl-2 in cellular proliferation. In this report, cellular fractionation of bcl-2 transfected cells in various phases of the cell cycle reveals a constitutive cytoplasmic pool of 19 kDa Bcl-2. Nuclear 19-kDa Bcl-2 immunoreactivity is far more pronounced in rapidly dividing nuclei compared with more quiescent nuclear fractions. This implicates that ongoing cell proliferation involves cleavage of nuclear Bcl-2 with a 19-kDa fragment.  相似文献   

4.
Apoptosis or programmed cell death produces cells breaking into several fragments of nuclei, cytoplasm or both nuclei and cytoplasm, known as apoptotic bodies which can be visualized in haematoxylin-eosin staining. Some genes (promoters and suppressors) control this process and certain mutations may induce the expression of abnormal proteins, which can be detected by immunohistochemical staining. Apoptosis can be detected by the TUNEL method either identifying apoptotic bodies or cells at the initial stages of the fragmentation process. We have studied 186 cases of infiltrating ductal breast carcinoma, stages pT1-pT2, and analysed the prognostic significance of tumour recurrence and overall survival of apoptotic index (AI) through univariate and multivariate analysis. We have also studied the immunohistochemical protein expression of apoptosis promoter and suppressors gene (p53, nuclear expression; bcl-2 and Bax, cytoplasm expression; BAG-1, nuclear and cytoplasm expression). The results indicate prognostic significance of p53 and bcl-2 related to patient death and bcl-2 and tumour size to tumour recurrence, bcl-2 acting as a protector factor (apoptotic suppressor) in both situations. On the other hand, we have not found useful prognostic information of AI either to tumour recurrence or overall survival in univariate or multivariate studies. In this study, Bax expression does not provide a new prognostic role in breast carcinoma, although it contrasts to the bcl-2 action and accelerates death.  相似文献   

5.
Abstract: The observation that delayed death of CA1 neurons after global ischemia is inhibited by protein synthesis inhibitors suggests that the delayed death of these neurons is an active process that requires new gene expression. Delayed death in CA1 has some of the characteristics of apoptotic death; however, candidate proapoptotic proteins have not been identified in the CA1 after ischemia. We studied the expression of Bax protein and mRNA, a member of the bcl-2 family that is an effector of apoptotic cell death, after global ischemia in the four-vessel global ischemia model in the rat and compared these results with the expression of the antiapoptotic gene bcl-2 . Bax mRNA and protein are both expressed in CA1 before delayed death, whereas bcl-2 protein is not expressed. Bcl-2 protein expression, but not that of Bax, is increased in CA3, a region that is ischemic but less susceptible to ischemic injury. In the dentate gyrus, both Bax and bcl-2 proteins are expressed. The selective expression of Bax in CA1 supports the hypothesis that Bax could contribute to delayed neuronal death in these vulnerable neurons by an independent mechanism or by forming heterodimers with gene family members other than bcl-2.  相似文献   

6.
CED-9 blocks programmed cell death (apoptosis) in the nematode C. elegans by binding to and neutralizing CED-4, an essential activator of the aspartate-directed cysteine protease (caspase) CED-3. In mammals, the CED-9 homologs Bcl-2 and Bcl-xL also block apoptosis by interfering with the activation of CED-3-like caspases. However, it is unknown whether this occurs by binding to the CED-4 homolog Apaf-1. Whilst two groups previously detected an interaction between Bcl-xL and Apaf-1 in immunoprecipitates,1,2 another group found no interaction between Apaf-1 and any of ten individual members of the Bcl-2 family using the same experimental approach.3 In this study, we aimed to resolve this discrepancy by monitoring the binding of Apaf-1 to three Bcl-2 family members within cells. Using immunofluorescence and Western blot analysis, we show that whilst Apaf-1 is a predominantly cytoplasmic protein, Bcl-2, Bcl-xL and Bax mostly reside on nuclear/ER and mitochondrial membranes. This pattern of localization is maintained when the proteins are co-expressed in both normal and apoptotic cells, suggesting that Bcl-2, Bcl-xL or Bax do not significantly sequester cytoplasmic Apaf-1 to intracellular membranes. In addition, we confirm that Apaf-1 does not interact with Bcl-2 and Bcl-xL in immunoprecipitates. Based on these data, we propose that Apaf-1 is not a direct, physiological target of Bcl-2, Bcl-xL or Bax.  相似文献   

7.
Immunohistochemical detection of expression of the anti-apoptotic Bcl-2 protein is widely studied as a putative prognostic and predictive factor in various types of cancer. For that purpose, heating for 10 min by microwave (MW) up to 100o C in citrate buffer, pH 6.0, prior to immunostaining is often used to retrieve Bcl-2 antigens in archival formalin-fixed, paraffin-embedded tissue. We recently reported that Bcl-2 is not only a cytoplasmic protein, but that it is present also in interphase nuclei and that it strongly associates with mitotic chromosomes. Furthermore, we showed that binding of the monoclonal antibody (MAb) #124 with nuclear/chromosomal epitopes is diminished by formaldehyde-based fixatives and cannot be restored by MW treatment for 10 min. Here we report that prolonged MW heating or heating up to 130°C in a high pressure cooker (HPC), despite improved cytoplasmic immunostaining, fails to retrieve nuclear/chromosomal Bcl-2 epitopes recognized by the MAb #124 in human tissues. In contrast, these procedures can retrieve nuclear/chromosomal Bcl-2 epitopes detected by polyclonal #15616E antibodies in rat tissues. The specificity of these epitopes was confirmed by Western blot analysis of tissues treated by MW heating or HPC.  相似文献   

8.
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast Saccharomyces cerevisiae to investigate if the neuroprotective function of prion protein requires other members of the Bcl-2 family given that S. cerevisiae lacks Bcl-2 genes but undergoes a mitochondrial-dependent apoptotic cell death upon exogenous expression of Bax protein. We show that Bax induces cell death and growth inhibition in S. cerevisiae. Prion protein prevents Bax-mediated cell death. Prion protein overcomes Bax-mediated growth arrest in S phase but cannot overcome population growth inhibition because the cells then accumulate in G(2)/M phase. We conclude that prion protein does not require other Bcl-2 family proteins to protect against Bax-mediated cell death.  相似文献   

9.
Molecular iodine (I2) is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rat, and has also been shown to have beneficial effects in fibrocystic human breast disease. Cytotoxicity of iodine on cultured human breast cancer cell lines, namely MCF-7, MDA-MB-231, MDA-MB-453, ZR-75-1, and T-47D, is reported in this communication. Iodine induced apoptosis in all of the cell lines tested, except MDA-MB-231, shown by sub-G1 peak analysis using flow cytometry. Iodine inhibited proliferation of normal human peripheral blood mononuclear cells; however, it did not induce apoptosis in these cells. The iodine-induced apoptotic mechanism was studied in MCF-7 cells. DNA fragmentation analysis confirmed internucleosomal DNA degradation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling established that iodine induced apoptosis in a time- and dose-dependent manner in MCF-7 cells. Iodine-induced apoptosis was independent of caspases. Iodine dissipated mitochondrial membrane potential, exhibited antioxidant activity, and caused depletion in total cellular thiol content. Western blot results showed a decrease in Bcl-2 and up-regulation of Bax. Immunofluorescence studies confirmed the activation and mitochondrial membrane localization of Bax. Ectopic Bcl-2 overexpression did not rescue iodine-induced cell death. Iodine treatment induces the translocation of apoptosis-inducing factor from mitochondria to the nucleus, and treatment of N-acetyl-L-cysteine prior to iodine exposure restored basal thiol content, ROS levels, and completely inhibited nuclear translocation of apoptosis-inducing factor and subsequently cell death, indicating that thiol depletion may play an important role in iodine-induced cell death. These results demonstrate that iodine treatment activates a caspase-independent and mitochondria-mediated apoptotic pathway.  相似文献   

10.
Studies of apoptosis in C. elegans have allowed the identification of three genes, ced-3, ced-4 and ced-9. Their products constitute the components of an induction pathway of apoptosis conserved in the nematode and mammals. In Drosophila, homologues have been found for CED-3, CED-4 and CED-9. CED-9 belongs to the Bcl-2 family which includes negative (Bcl-2) and positive (Bax) regulators of apoptosis. The recently discovered Bcl-2 family member named Drob-1 acts as a positive regulator of cell death. To address whether a Bcl-2 anti-apoptotic pathway exists in the fly, we studied the effects of expressing the mammalian genes bcl-2 in Drosophila. In embryos, expression of bcl-2 inhibits developmental and X-ray-induced apoptosis. Expressing bcl-2 or the pro-apoptotic mammalian bax in the developing eye and wing alters these structures, bcl-2 increasing the number of cells, while bax reduces the number of cells. In addition, the functional interaction between Bcl-2 and Bax is conserved. These results indicate that factors necessary for the activity of bcl-2 and bax are present in Drosophila. Therefore, a Bcl-2 pathway for inhibition of cell death may exist in the fly.  相似文献   

11.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

12.
Plateletactivating factor (PAF) is a key mediator in pathogenesis of inflammatory bowel diseases (IBDs) but mechanisms of PAF-induced mucosal injury are poorly understood. To determine whether apoptosis and the Bcl-2-family of apoptosis regulatory gene products play a role in PAF-induced mucosal injury, we stably and conditionally overexpressed bcl-2 in rat small intestinal epithelial cells-6 under the control of a lactose-inducible promoter. Western blot analysis and immuno-histochemistry were used to verify inducible Bcl-2 and to analyze Bcl-2 and a proapoptotic member of the Bcl-2 family, Bax, subcellular distribution. DNA fragmentation was quantified by ELISA, caspase activity was measured by using fluorogenic peptide substrates, and mitochondrial membrane potential was assayed by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and fluorescence digital imaging. Bcl-2 expression was highly inducible by lactose analog isopropyl-beta-(d)-thiogalactoside (IPTG) and was localized predominantly to mitochondria. In the absence of bcl-2 overexpression and after treatment with PAF, Bax translocated to mitochondria, and mitochondrial membrane potential collapsed within 1 h, followed by caspase-3 activation, which peaked at 6 h with an ensuing DNA fragmentation maximizing at 18 h. After IPTG-induction of bcl-2 expression, PAF failed to induce DNA fragmentation, caspase-3 activation, Bax translocation, or a collapse of mitochondrial membrane potential. These data are the first to show that PAF can activate apoptotic machinery in enterocytes via a mechanism involving Bax translocation and collapse of mitochondrial membrane potential and that both of these events are under control by bcl-2 expression levels. A better understanding of the role of PAF and Bcl-2 family of apoptosis regulators in epithelial cell death might aid design of better therapeutic or preventive strategies for IBDs.  相似文献   

13.
Genotoxic stimuli, including anticancer drugs, induce apoptosis in cancer cells through increase of p53, p21WAF1/CIP1 , at least in part. Bcl-2 and Bax modify this pathway or directly regulated by p53. Here we studied Adriamycin (ADM)-induced apoptosis in four human bladder cancer cell lines in respect of p53, p21WAF1/CIP1 and Bcl-2 family proteins. After ADM, treatment bladder cancer cells underwent dose-dependent cell death with typical morphologic features of apoptosis. Among four cell lines RT4 with wt p53, low ratio of Bcl-2 to Bax and induction of p21WAF1/CIP1 after ADM treatment, was the most sensitive to induction of apoptosis. Thus, p53, p21WAF1/CIP1 , Bcl-2 and Bax status might determine susceptibility of bladder cancer cells to ADM induced apoptosis.  相似文献   

14.
DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli.  相似文献   

15.
Studies indicate that phosphorylated Bcl-2 cannot form a heterodimer with Bax and thus may lose its antiapoptotic potential. The present study tests the hypothesis that graded hypoxia in cerebral tissue induces the phosphorylation of Bcl-2, thus altering the heterodimerization of Bcl-2 with Bax and subsequently leading to apoptosis. Anesthetized, ventilated newborn piglets were assigned to a normoxic and a graded hypoxic group. Cerebral cortical neuronal nuclei were isolated and immunoprecipitated; immune complexes were separated and reacted with Bcl-2 and Bax specific antibodies. The results show an increased level of serine/tyrosine phosphorylated Bcl-2 in nuclear membranes of hypoxic animals. The level of phosphorylated Bcl-2 protein increased linearly with decrease in tissue PCr. The level of phosphorylated Bax in the neuronal nuclear membranes was independent of cerebral tissue PCr. The data shows that during hypoxia, there is increased phosphorylation of Bcl-2, which may prevent its heterodimerization with Bax and lead to increased proapoptotic activity due to excess Bax in the hypoxic brain. Further increased phosphorylation of Bcl-2 may alter the Bcl-2/Bax-dependent antioxidant, lipid peroxidation and pore forming activity, as well as the regulation of intranuclear Ca2+ and caspase activation pathways. We speculate that increased phosphorylation of Bcl-2 in neuronal nuclear membranes is a potential mechanism of programmed cell death activation in the hypoxic brain.  相似文献   

16.
Genetic analysis of programmed cell death in Drosophila reveals many similarities with mammals. Heretofore, a missing link in the fly has been the absence of any Bcl-2/Bax family members, proteins that function in mammals as regulators of mitochondrial cytochrome c release. A Drosophila homologue of the human killer protein Bok (DBok) was identified. The predicted structure of DBok is similar to pore-forming Bcl-2/Bax family members. DBok induces apoptosis in insect and human cells, which is suppressible by anti-apoptotic human Bcl-2 family proteins. A caspase inhibitor suppressed DBok-induced apoptosis but did not prevent DBok-induced cell death. Moreover, DBok targets mitochondria and triggers cytochrome c release through a caspase-independent mechanism. These characteristics of DBok reveal evolutionary conservation of cell death mechanisms in flies and humans.  相似文献   

17.
Spontaneous immunity against Bcl-xL in cancer patients   总被引:4,自引:0,他引:4  
It is well-established that peptide epitopes derived from human tumor-associated Ags can be recognized by CTL in the context of the MHC molecule. However, the vast majority of Ags described are not vital for survival and growth of the tumor cells, and immunoselection of Ag-loss variants during immunotherapy has been demonstrated in several cases. Malfunctions in death pathways observed in human cancers are often due to overexpression of antiapoptotic proteins in the Bcl-2 protein family, i.e., Bcl-2, Mcl-1, and Bcl-xL. These antiapoptotic proteins are implicated in cancer development, tumor progression, and drug resistance. The general overexpression of the antiapoptotic members of the Bcl-2 family in cancer and the fact that down-regulation or loss of expression of these proteins as a means of immune escape would impair sustained tumor growth makes them very attractive targets for anticancer immunotherapy. Recently, we identified spontaneous T cell responses against Bcl-2- and Mcl-1-derived peptides in patients suffering from cancers of different origin. In this study, we demonstrate that Bcl-xL is a target for T cell recognition in cancer patients. Thus, we describe spontaneous HLA-A2-restricted cytotoxic T cell responses against peptide epitopes derived from Bcl-xL by means of ELISPOT and flow cytometry stainings, whereas no responses were detected against any of the Bcl-xL epitopes in any healthy controls. Moreover, Bcl-xL-specific T cells are cytotoxic against HLA-matched cancer cells of different origin. Thus, cellular immune responses against apoptosis inhibitors like the Bcl-2 family proteins appear to represent a general feature in cancer.  相似文献   

18.
19.
The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are important in maintaining cytoskeletal integrity and DNA repair, and activate deoxyribonucleases, producing cell death with morphological features of apoptosis. To address the question of whether these Bcl-2 and caspase family members participate in the process of delayed neuronal death in humans, we examined brain tissue samples removed from adult patients during surgical decompression for intracranial hypertension in the acute phase after traumatic brain injury (n=8) and compared these samples to brain tissue obtained at autopsy from non-trauma patients (n=6). An increase in Bcl-2 but not Bcl-xL or Bax, cleavage of caspase-1, up-regulation and cleavage of caspase-3, and evidence for DNA fragmentation with both apoptotic and necrotic morphologies were found in tissue from traumatic brain injury patients compared with controls. These findings are the first to demonstrate that programmed cell death occurs in human brain after acute injury, and identify potential pharmacological and molecular targets for the treatment of human head injury.  相似文献   

20.
Control of mitochondrial permeability by Bcl-2 family members   总被引:32,自引:0,他引:32  
Programmed cell death (apoptosis) is regulated by the Bcl-2 family of proteins. Although it remains unclear how these family members control apoptosis, they clearly have the capacity to regulate the permeability of intracellular membranes to ions and proteins. Proapoptotic members of the Bcl-2 family, especially Bax and Bid, have been extensively analyzed for the ability to form channels in membranes and to regulate preexisting channels. Anti-apoptotic members of the family tend to have the opposing effects on membrane channel formation. The molecular mechanisms of the different models for the permeabilization of membranes by the Bcl-2 family members and the regulation of Bcl-2 family member subcellular localizations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号