首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
20 S RNA virus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome encodes only its RNA polymerase, p91, and resides in the cytoplasm in the form of a ribonucleoprotein complex with p91. We succeeded in generating 20 S RNA virus in vivo by expressing, from a vector, genomic strands fused at the 3'-ends to the hepatitis delta virus antigenomic ribozyme. Using this launching system, we analyzed 3'-cis-signals present in the genomic strand for replication. The viral genome has five-nucleotide inverted repeats at both termini (5'-GGGGC... GCCCC-OH). The fifth G from the 3'-end was dispensable for replication, whereas the third and fourth Cs were essential. The 3'-terminal and penultimate Cs could be eliminated or modified to other nucleotides; however, the generated viruses recovered these terminal Cs. Furthermore, extra nucleotides added at the viral 3'-end were eliminated in the launched viruses. Therefore, 20 S RNA virus has a mechanism(s) to maintain the correct size and sequence of the viral 3'-end. This may contribute to its persistent infection in yeast. We also succeeded in generating 20 S RNA virus similarly from antigenomic strands provided active p91 was supplied from a second vector in trans. Again, a cluster of four Cs at the 3'-end in the antigenomic strand was essential for replication. In this work, we also present the first conclusive evidence that 20 S and 23 S RNA viruses are independent replicons.  相似文献   

2.
At the 5' and 3' end of genomic HCV RNA there are two highly conserved, untranslated regions, 5'UTR and 3'UTR. These regions are organized into spatially ordered structures and they play key functions in regulation of processes of the viral life cycle. Most nucleotides of the region located at the 5' side of the coding sequence serve as an internal ribosomal entry site, IRES, which directs cap-independent translation. The RNA fragment present at the 3' end of the genome is required for virus replication and probably contributes to translation of viral proteins. During virus replication its genomic strand is transcribed into a strand of minus polarity, the replicative strand. Its 3' terminus is responsible for initiation of synthesis of descendant genomic strands. This article summarizes our current knowledge on the structure and function of the non-coding regions of hepatitis C genomic RNA, 5'UTR and 3'UTR, and the complementary sequences of the replicative viral strand.  相似文献   

3.
4.
5.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

6.
7.
Human immunodeficiency virus type 1 escape from RNA interference   总被引:20,自引:0,他引:20       下载免费PDF全文
Boden D  Pusch O  Lee F  Tucker L  Ramratnam B 《Journal of virology》2003,77(21):11531-11535
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.  相似文献   

8.
The majority of human, animal and plant viral pathogens possess genomes composed of RNA. The strategies evolved for expression and replication of viral RNA genomes can differ significantly from those utilized for expression and replication of host-cell genetic material. Consequently, knowledge of the molecular details of these strategies can lead to a clearer understanding of the origin, evolution and control of viral pathogens. We describe recent progress in identifying important structural and functional domains of the RNA genomes and associated replicative enzymes for two very different viruses: vesicular stomatitis virus, which possesses a single-stranded RNA genome of negative polarity, and wound tumor virus, which contains a genome composed of 12 discrete segments of double-stranded RNA.  相似文献   

9.
10.
11.
12.
13.
RNA interference (RNAi) is widely used as a screening tool for the identification of host genes involved in viral infection. Due to the limitation of raw small interfering RNA (siRNA), we tested two commonly used short hairpin RNA (shRNA) lentiviral libraries to identify host factors involved in hepatitis C virus (HCV) infection. It was found that these shRNA library vectors caused non-specific disturbance of HCV replication that was not due to toxicity or interferon response, but related to the high shRNA levels disturbing the endogenous microRNA biogenesis. The high shRNA levels achieved with these vectors reduced the levels of mature microRNAs, including miR-122 known to promote HCV replication. Our findings extend the caution of potential off-target effects of lentiviral shRNA libraries which appear unsuitable to screen microRNA regulated phenotypes, such as HCV replication.  相似文献   

14.
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.  相似文献   

15.
Short interfering RNAs (siRNAs) directed against poliovirus and other viruses effectively inhibit viral replication. Although RNA interference (RNAi) may provide the basis for specific antiviral therapies, the limitations of RNAi antiviral strategies are ill defined. Here, we show that poliovirus readily escapes highly effective siRNAs through unique point mutations within the targeted regions. Competitive analysis of the escape mutants provides insights into the basis of siRNA recognition. The RNAi machinery can tolerate mismatches but is exquisitely sensitive to mutations within the central region and the 3' end of the target sequence. Indeed, specific mutations in the target sequence resulting in G:U mismatches are sufficient for the virus to escape siRNA inhibition. However, using a pool of siRNAs to simultaneously target multiple sites in the viral genome prevents the emergence of resistant viruses. Our study uncovers the elegant precision of target recognition by the RNAi machinery and provides the basis for the development of effective RNAi-based therapies that prevent viral escape.  相似文献   

16.
J Herold  R Andino 《Molecular cell》2001,7(3):581-591
The mechanisms and factors involved in the replication of positive stranded RNA viruses are still unclear. Using poliovirus as a model, we show that a long-range interaction between ribonucleoprotein (RNP) complexes formed at the ends of the viral genome is necessary for RNA replication. Initiation of negative strand RNA synthesis requires a 3' poly(A) tail. Strikingly, it also requires a cloverleaf-like RNA structure located at the other end of the genome. An RNP complex formed around the 5' cloverleaf RNA structure interacts with the poly(A) binding protein bound to the 3' poly(A) tail, thus linking the ends of the viral RNA and effectively circularizing it. Formation of this circular RNP complex is required for initiation of negative strand RNA synthesis. RNA circularization may be a general replication mechanism for positive stranded RNA viruses.  相似文献   

17.
Hepatitis C virus (HCV) entry, translation, replication, and assembly occur with defined kinetics in distinct subcellular compartments. It is unclear how HCV spatially and temporally regulates these events within the host cell to coordinate its infection. We have developed a single molecule RNA detection assay that facilitates the simultaneous visualization of HCV (+) and (−) RNA strands at the single cell level using high-resolution confocal microscopy. We detect (+) strand RNAs as early as 2 hours post-infection and (−) strand RNAs as early as 4 hours post-infection. Single cell levels of (+) and (−) RNA vary considerably with an average (+):(−) RNA ratio of 10 and a range from 1–35. We next developed microscopic assays to identify HCV (+) and (−) RNAs associated with actively translating ribosomes, replication, virion assembly and intracellular virions. (+) RNAs display a defined temporal kinetics, with the majority of (+) RNAs associated with actively translating ribosomes at early times of infection, followed by a shift to replication and then virion assembly. (−) RNAs have a strong colocalization with NS5A, but not NS3, at early time points that correlate with replication compartment formation. At later times, only ~30% of the replication complexes appear to be active at a given time, as defined by (−) strand colocalization with either (+) RNA, NS3, or NS5A. While both (+) and (−) RNAs colocalize with the viral proteins NS3 and NS5A, only the plus strand preferentially colocalizes with the viral envelope E2 protein. These results suggest a defined spatiotemporal regulation of HCV infection with highly varied replication efficiencies at the single cell level. This approach can be applicable to all plus strand RNA viruses and enables unprecedented sensitivity for studying early events in the viral life cycle.  相似文献   

18.
19.
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence-specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5'-untranslated region (5'UTR) (nt 286 to 304), Core (nt 371 to 389), NS3-1 (nt 2052 to 2060), NS3-2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV-1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27-derived expression cassette. Although 5'UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5'UTR. In both plasmid-and lentivirus-mediated expression systems, shRNAs against NS3-1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3-1 also inhibited replication of the HCV replicon in a dose-dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3-1 would be a useful tool to inhibit HCV-1b infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号