首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Positive sense single-stranded RNA viruses undergo three mutually exclusive processes to replicate within a cell. These are translation to produce proteins, replication to produce RNA viral genomes, and packaging to form virions. The allocation of newly synthesised viral genomes to these processes, which can be regarded as life-history traits, may be subject to natural selection for efficient reproduction. Here, we develop a mathematical model of the process of intracellular viral replication to study alternative strategies for the allocation and reallocation of viral genomes to these processes. We explore four cases of the model: (1) Free Movement, in which viral genomes can freely be allocated and reallocated among translation, replication and packaging; (2) Unidirectional Reallocation, in which allocation occurs freely but reallocation can only proceed from translation to replication to packaging; (3) Conveyor Belt, in which viral genomes are first allocated to translation, then passed on to replication and finally to packaging; and (4) Permanent Allocation in which new genomes are allocated to the three processes but not reallocated between them. We apply this model to hepatitis C virus and study changes in the production of virus as the rates of allocation and reallocation are varied. We find that high viral production occurs when allocation and reallocation of the genome are weighted towards the translation and replication processes. The replication process in particular is favoured. The most productive strategy is a form of the Free Movement model in which genomes are allocated entirely to the replication-translation cycle while allowing some genomes to be packaged through reallocation.  相似文献   

2.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

3.
R Levis  B G Weiss  M Tsiang  H Huang  S Schlesinger 《Cell》1986,44(1):137-145
Defective-interfering (DI) genomes of a virus contain sequence information essential for their replication and packaging. They need not contain any coding information and therefore are a valuable tool for identifying cis-acting, regulatory sequences in a viral genome. To identify these sequences in a DI genome of Sindbis virus, we cloned a cDNA copy of a complete DI genome directly downstream of the promoter for the SP6 bacteriophage DNA dependent RNA polymerase. The cDNA was transcribed into RNA, which was transfected into chicken embryo fibroblasts in the presence of helper Sindbis virus. After one to two passages the DI RNA became the major viral RNA species in infected cells. Data from a series of deletions covering the entire DI genome show that only sequences in the 162 nucleotide region at the 5' terminus and in the 19 nucleotide region at the 3' terminus are specifically required for replication and packaging of these genomes.  相似文献   

4.
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.  相似文献   

5.
The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.  相似文献   

6.
Endogenous viral elements in animal genomes   总被引:2,自引:0,他引:2  
Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.  相似文献   

7.
8.
Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development.  相似文献   

9.
The RNA genome of human hepatitis delta virus (HDV) is an unusual small circular single-stranded species that can fold on itself to form an unbranched rod-like structure. This RNA is replicated in the nucleus by RNA-directed RNA synthesis coupled with RNA processing events. During processing events a subgenomic, polyadenylated RNA that is complementary to the genome and expressed in the cytoplasm as the small form of the delta antigen, a 195-amino-acid protein essential for genome replication is produced. The strategies of RNA virus genome organization and expression are very diverse; those used by HDV seem unique among animal viruses, although there are some distant similarities with those used by some plant pathogens.  相似文献   

10.
张道微  张超凡  董芳  黄艳岚  张亚  周虹 《遗传》2016,38(9):811-820
随着CRISPR/Cas9系统在基因组编辑技术上的开发和完善,CRISPR/Cas9系统在应用于动物病毒感染性疾病防治并取得相当成效的同时,也逐步被应用到对植物病毒基因组进行高效靶向修饰的研究中。CRISPR/Cas9系统对基因组靶向修饰作用不仅实现了对植物DNA病毒基因组序列的编辑,还展示了其有效作用于植物RNA病毒基因组的潜力,同时CRISPR/Cas9系统还能在基因转录和转录后调控水平发挥作用,说明该系统具有通过多种途径调控植物病毒复制的潜能。相对其他植物病毒病防治策略,该系统对病毒基因组的编辑更精准、对基因表达的调控更稳定,对病毒病的抗性也更为广谱。本文将CRISPR/Cas9系统与其他植物病毒病防治策略进行了比较,概述了该系统在培育植物抗病毒病新种质中的优势,分析了其具体应用在该领域中面临的主要问题,讨论了该系统在培育抗病毒植物新种质应用中的发展趋势。  相似文献   

11.
George J  Raju R 《Journal of virology》2000,74(20):9776-9785
The 3' nontranslated region of the genomes of Sindbis virus (SIN) and other alphaviruses carries several repeat sequence elements (RSEs) as well as a 19-nucleotide (nt) conserved sequence element (3'CSE). The 3'CSE and the adjoining poly(A) tail of the SIN genome are thought to act as viral promoters for negative-sense RNA synthesis and genome replication. Eight different SIN isolates that carry altered 3'CSEs were studied in detail to evaluate the role of the 3'CSE in genome replication. The salient findings of this study as it applies to SIN infection of BHK cells are as follows: i) the classical 19-nt 3'CSE of the SIN genome is not essential for genome replication, long-term stability, or packaging; ii) compensatory amino acid or nucleotide changes within the SIN genomes are not required to counteract base changes in the 3' terminal motifs of the SIN genome; iii) the 5' 1-kb regions of all SIN genomes, regardless of the differences in 3' terminal motifs, do not undergo any base changes even after 18 passages; iv) although extensive addition of AU-rich motifs occurs in the SIN genomes carrying defective 3'CSE, these are not essential for genome viability or function; and v) the newly added AU-rich motifs are composed predominantly of RSEs. These findings are consistent with the idea that the 3' terminal AU-rich motifs of the SIN genomes do not bind directly to the viral polymerase and that cellular proteins with broad AU-rich binding specificity may mediate this interaction. In addition to the classical 3'CSE, other RNA motifs located elsewhere in the SIN genome must play a major role in template selection by the SIN RNA polymerase.  相似文献   

12.
The great majority of plant viruses encapsidate messenger-sense ssRNA and have no natural DNA phase in their life cycle. Despite their RNA nature, essentially any desired change can be introduced into such genomes by using recombinant DNA techniques with suitably constructed, expressible viral cDNA clones. For some viruses such as brome mosaic virus, these methods have been used to define the sequences controlling RNA-directed genomic RNA replication and the expression of internal genes via subgenomic mRNAs. The results suggest a surprising degree of genetic flexibility, which appears to be reflected in the varied gene complements and genetic organizations of presumably related plant and animal RNA viruses sharing conserved replication genes. Foreign genes inserted in such RNA virus genomes can be amplified and expressed to a high level in transfected plant cells. In addition to the potential use of such viruses as episomal expression vectors, it should be possible to couple the viral pathways of RNA-dependent RNA synthesis to amplify and to further regulate the expression of genes transformed into plant chromosomes.  相似文献   

13.
We have developed naked DNA vaccine candidates for foot-and-mouth disease (FMD), an important disease of domestic animals. The virus that causes this disease, FMDV, is a member of the picornavirus family, which includes many important human pathogens, such as poliovirus, hepatitis A virus, and rhinovirus. Picornaviruses are characterized by a small (7-9000 nucleotide) RNA genome that encodes capsid proteins, processing proteinases, and enzymes required for RNA replication. We have developed two different types of DNA vaccines for FMD. The first DNA vaccine, pP12X3C, encodes the viral capsid gene (P1) and the processing proteinase (3C). Cells transfected with this DNA produce processed viral antigen, and animals inoculated with this DNA using a gene gun produced detectable antiviral immune responses. Mouse inoculations with this plasmid, and with a derivative containing a mutation in the 3C proteinase, indicated that capsid assembly was essential for induction of neutralizing antibody responses. The second DNA vaccine candidate, pWRMHX, encodes the entire FMDV genome, including the RNA-dependent RNA polymerase, permitting the plasmid-encoded viral genomes to undergo amplification in susceptible cells. pWRMHX encodes a mutation at the cell binding site, preventing the replicated genomes from causing disease. Swine inoculated with this vaccine candidate produce viral particles lacking the cell binding site, and neutralizing antibodies that recognize the virus. Comparison of the immune responses elicited by pP12X3C and pWRMHX in swine indicate that the plasmid encoding the replicating genome stimulated a stronger immune response, and swine inoculated with pWRMHX by the intramuscular, intradermal, or gene gun routes were partially protected from a highly virulent FMD challenge.  相似文献   

14.
Plant viruses that contain plus‐sensed single‐stranded RNA genomes are highly abundant in nature. As the equivalents of large mRNAs, these viral genomes utilize a wide variety of gene expression strategies for the production of their encoded proteins. The potyviruses, which are among the most agriculturally important members in this category, contain a single large open reading frame (ORF) coding for a polyprotein that is processed into functional units. For many years, the products derived from the full‐length polyprotein were thought to be the only functional viral proteins. However, this notion was dispelled when an additional essential viral ORF, PIPO, was discovered encoded in an alternative reading frame. Since then, the PIPO protein—P3N‐PIPO, which mediates virus movement in plants—has been intensively studied, but its mode of expression remained elusive until now. Two articles, one in this issue of EMBO Reports, now report that slippage of the viral polymerase during viral genome replication is responsible for shifting PIPO into a translated reading frame, thereby allowing for production of P3N‐PIPO 1 2 . This mechanism of gene expression represents a novel strategy for plant viruses.  相似文献   

15.
We have constructed a series of deletion mutants spanning the genome of duck hepatitis B virus in order to determine which regions of the viral genome are required in cis for packaging of the pregenome into capsid particles. Deletion of sequences within either of two nonadjacent regions prevented replication of the mutant viral genomes expressed in a permissive avian hepatoma cell line in the presence of functionally active viral core and P proteins. Extraction of RNA from cells transfected with these replication-defective mutants showed that the mutants retained the capacity to be transcribed into a pregenomic-size viral RNA, but that these RNA species were not packaged into viral capsids. The two regions defined by these deletions are located 36 to 126 (region I) and 1046 to 1214 (region II) nucleotides downstream of the 5' end of the pregenome and contain sequences which are required in cis for encapsidation of the duck hepatitis B virus pregenome.  相似文献   

16.
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.  相似文献   

17.
18.
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.  相似文献   

19.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

20.
For the past two decades virologists have strived to make full-length clones of viral genomes that, on transfection into permissive eukaryotic cells, initiate a productive infection. The large variety of viral RNA and DNA genome structures, as well as different replication strategies, has required investigators to develop new approaches to produce infectious DNA in Escherichia coli. A member of the poxviridae, one of the most complex virus families, has now been made into an infectious clone in E. coli for the first time. Although the isolation was complicated, the infectious clone will greatly simplify future genetic studies of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号