首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
It is well documented that Vitamin D3 metabolites and synthetic analogs are metabolized to their epimers of the hydroxyl group at C-3 of the A-ring. We investigated the C-3 epimerization of Vitamin D3 metabolites in various cultured cells and basic properties of the enzyme responsible for the C-3 epimerization. 1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3], 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were metabolized to the respective C-3 epimers in UMR-106 (rat osteosarcoma), MG-63 (human osteosarcoma), Caco-2 (human colon adenocarcinoma), LLC-PK1 (porcine kidney) and HepG2 (human hepatoblastoma)] cells, although the differences existed in the amount of each C-3 epimer formed with different cell types. In terms of maximum velocity (Vmax) and Michaelis constant (Km) values for the C-3 epimerization in microsome fraction of UMR-106 cells, 25(OH)D3 exhibited the highest specificity for the C-3 epimerization among 1alpha,25(OH)2D3, 25(OH)D3 and 24,25(OH)2D3. C-3 epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha --> beta) -hydroxysteroid epimerase (HSE) catalyzed the C-3 epimerization in vitro. Based on these results, the enzyme responsible for the C-3 epimerization of Vitamin D3 are thought to be different from already-known cytochrome P450-related Vitamin D metabolic enzymes and HSE.  相似文献   

2.
Vitamin D-24-hydroxylase (CYP24) is one of the enzymes responsible for vitamin D metabolism. CYP24 catalyzes the conversion of 25-hydroxyvitamin D(3) [25(OH)D(3)] to 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] in the kidney. CYP24 is also involved in the breakdown of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], the active form of vitamin D(3). In this study, we generated transgenic (Tg) rats constitutively expressing CYP24 gene to investigate the biological role of CYP24 in vivo. Surprisingly, the Tg rats showed a significantly low level of plasma 24,25(OH)(2)D(3). Furthermore, the Tg rats developed albuminuria and hyperlipidemia shortly after weaning. The plasma lipid profile revealed that all lipoprotein fractions were elevated in the Tg rats. Also, the Tg rats showed atherosclerotic lesions in the aorta, which greatly progressed with high-fat and high-cholesterol feeding. These unexpected results suggest that CYP24 is involved in functions other than the regulation of vitamin D metabolism.  相似文献   

3.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

4.
5.
There has been some controversy over whether the 25-hydroxylation of vitamin D(3) is carried out by one enzyme or two and whether this cytochrome P450 enzyme is found in the mitochondrial or microsomal fractions of liver. The pig is currently the only species in which both the microsomal 25-hydroxylase (CYP2D25) and the mitochondrial 25-hydroxylase (CYP27A1) have been cloned and characterized. In this paper, the roles of the two enzymes in 25-hydroxylation of vitamin D(3) are examined in primary cultures of hepatocytes. Inhibition experiments indicated that tolterodine and 7 alpha-hydroxy-4-cholesten-3-one were selective inhibitors of the CYP2D25- and CYP27A-mediated 25-hydroxylation of vitamin D(3), respectively. Addition of each inhibitor to primary hepatocytes decreased the total 25-hydroxylation of vitamin D(3) to about the same extent. No inhibition of other hydroxylase activities tested was found. Phorbol 12-myristate 13-acetate down-regulated the expression of both CYP2D25 and CYP27A1 as well as the 25-hydroxylase activity of the hepatocytes. The results implicate that both CYP2D25 and CYP27A1 contribute to the 25-hydroxylation in hepatocytes and are important in the bioactivation of vitamin D(3).  相似文献   

6.
20S-hydroxyvitamin D3 (20S-(OH)D3), an in vitro product of vitamin D3 metabolism by the cytochrome P450scc, was recently isolated, identified and shown to possess antiproliferative activity without inducing hypercalcemia. The enzymatic production of 20S-(OH)D3 is tedious, expensive, and cannot meet the requirements for extensive chemical and biological studies. Here we report for the first time the chemical synthesis of 20S-(OH)D3 which exhibited biological properties characteristic of the P450scc-generated compound. Specifically, it was hydroxylated to 20,23-dihydroxyvitamin D3 and 17,20-dihydroxyvitamin D3 by P450scc and was converted to 1α,20-dihydroxyvitamin D3 by CYP27B1. It inhibited proliferation of human epidermal keratinocytes with lower potency than 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in normal epidermal human keratinocytes, but with equal potency in immortalized HaCaT keratinocytes. It also stimulated VDR gene expression with similar potency to 1,25(OH)2D3, and stimulated involucrin (a marker of differentiation) and CYP24 gene expression, showing a lower potency for the latter gene than 1,25(OH)2D3. Testing performed with hamster melanoma cells demonstrated a dose-dependent inhibition of cell proliferation and colony forming capabilities similar or more pronounced than those of 1,25(OH)2D3. Thus, we have developed a chemical method for the synthesis of 20S-(OH)D3, which will allow the preparation of a series of 20S-(OH)D3 analogs to study structure-activity relationships to further optimize this class of compound for therapeutic use.  相似文献   

7.
Streptomyces griseolus cytochrome P450SU-1 (CYP105A1) was expressed in Escherichia coli at a level of 1.0 micromol/L culture and purified with a specific content of 18.0 nmol/mg protein. Enzymatic studies revealed that CYP105A1 had 25-hydroxylation activity towards vitamin D2 and vitamin D3. Surprisingly, CYP105A1 also showed 1alpha-hydroxylation activity towards 25(OH)D3. As mammalian mitochondrial CYP27A1 catalyzes a similar two-step hydroxylation towards vitamin D3, the enzymatic properties of CYP105A1 were compared with those of human CYP27A1. The major metabolite of vitamin D2 by CYP105A1 was 25(OH)D2, while the major metabolites by CYP27A1 were both 24(OH)D2 and 27(OH)D2. These results suggest that CYP105A1 recognizes both vitamin D2 and vitamin D3 in a similar manner, while CYP27A1 does not. The Km values of CYP105A1 for vitamin D2 25-hydroxylation, vitamin D3 25-hydroxylation, and 25-hydroxyvitamin D3 1alpha-hydroxylation were 0.59, 0.54, and 0.91 microM, respectively, suggesting a high affinity of CYP105A1 for these substrates.  相似文献   

8.
It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.  相似文献   

9.
vitamin D is 25-hydroxylated in the liver, before being activated by 1alpha-hydroxylation in the kidney. Recently, the rat cytochrome P450 2J3 (CYP2J3) has been identified as a principal vitamin D 25-hydroxylase in the rat [Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004;279(22):22848-56]. In this study, we examine whether human CYP2J2 that exhibits 73% amino acid homology to rat CYP2J3 has similar catalytic properties. Recombinant human CYP2J2 was overexpressed in Escherichia coli, purified, and assayed for vitamin D 25-hydroxylation activity. We found significant 25-hydroxylation activity toward vitamin D3 (turnover number, 0.087 min(-1)), vitamin D2 (0.16 min(-1)), and 1alpha-hydroxyvitamin D3 (2.2 min(-1)). Interestingly, human CYP2J2 hydroxylated vitamin D2, an exogenous vitamin D, at a higher rate than it did vitamin D3, an endogenous vitamin D, whereas, rat CYP2J3 hydroxylated vitamin D3 (1.4 min(-1)) more efficiently than vitamin D2 (0.86 min(-1)). Our study demonstrated that human CYP2J2 exhibits 25-hydroxylation activity as well as rat CYP2J3, although the activity of human CYP2J2 is weaker than rat CYP2J3. CYP2J2 and CYP2J3 exhibit distinct preferences toward vitamin D3 and D2.  相似文献   

10.
The metabolism of 1α,25-dihydroxyvitamin D2 (1α,25(OH)2D2) by human CYP24A1 was examined using the recombinant enzyme expressed in Escherichia coli cells. HPLC analysis revealed that human CYP24A1 produces at least 10 metabolites, while rat CYP24A1 produces only three metabolites, indicating a remarkable species-based difference in the CYP24A1-dependent metabolism of 1α,25(OH)2D2 between humans and rats. LC-MS analysis and periodate treatment of the metabolites strongly suggest that human CYP24A1 converts 1α,25(OH)2D2 to 1α,24,25,26(OH)4D2, 1α,24,25,28(OH)4D2, and 24-oxo-25,26,27-trinor-1α(OH)D2 via 1α,24,25(OH)3D2. These results indicate that human CYP24A1 catalyzes the C24-C25 bond cleavage of 1α,24,25(OH)2D2, which is quite effective in the inactivation of the active form of vitamin D2. The combination of hydroxylation at multiple sites and C-C bond cleavage could form a large number of metabolites. Our findings appear to be useful to predict the metabolism of vitamin D2 and its analogs in the human body.  相似文献   

11.
There are three mixed function oxidases which catalyze hydroxylations of vitamin D and its derivatives. These include the hepatic mitochondrial or microsomal vitamin D3-25-hydroxylase and the two renal mitochondrial enzymes which further hydroxylate 25-hydroxyvitamin-D3 (25-OH-D3) to form 24R,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the primary steroid hormonal derivative of vitamin D3. All three enzymes are cytochrome P450 dependent. The two renal mitochondrial enzymes are regulated, usually in a reciprocal fashion. The intracellular signalling systems involved in this regulation include 1,25(OH)2D3 itself and both protein kinases A and C. Recent progress has been made in the purification and cloning of the vitamin D3-25-hydroxylase and the 25-OH-D3-24-hydroxylase. When the 25-OH-D3-1-hydroxylase is purified and cloned, efforts which have thus far been frustrated by its low abundance, fertile new ground for the study of the regulation of vitamin D metabolism at the molecular level will be opened up.  相似文献   

12.
Khanal RC  Smith NM  Nemere I 《Steroids》2007,72(2):158-164
Phosphate homeostasis is controlled in part by absorption from the intestine, and reabsorption in the kidney. While the effect of Vitamin D metabolites on enterocytes is well documented, in the current study we assess selected responses in primary cultures of kidney cells. Time course studies revealed a rapid stimulation of phosphate uptake in cells treated with 1,25(OH)(2)D(3), relative to controls. Dose-response studies indicated a biphasic curve with optimal stimulation at 300 pM 1,25(OH)(2)D(3) and inhibition at 600 pM seco-steroid. Antibody 099--against the 1,25D(3)-MARRS receptor - abolished stimulation by the steroid hormone. Moreover, phosphate uptake was mediated by the protein kinase C pathway. The metabolite 24,25(OH)(2)D(3), which was found to inhibit the rapid stimulation of phosphate uptake in intestinal cells, had a parallel effect in cultured kidney cells. Finally, the 24,25(OH)(2)D(3) binding protein, catalase, was assessed for longer term down regulation. In both intestinal epithelial cells and kidney cells incubated with 24,25(OH)(2)D(3) for 5-24h, both the specific activity of the enzyme and protein levels were decreased relative to controls, while 1,25(OH)(2)D(3) increased both parameters over the same time periods. We conclude that the Vitamin D metabolites have similar effects in both kidney and intestine, and that 24,25(OH)(2)D(3) may have effects at the level of gene expression.  相似文献   

13.
Synthesis of 1α,25-dihydroxyvitamin D3-3β-bromoacetate (1,25(OH)2D3-3-BE), a potential anti-cancer agent is presented. We also report that mechanism of action of 1,25(OH)2D3-3-BE may involve reduction of its catabolism, as evidenced by the reduced and delayed expression of 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) gene in cellular assays.  相似文献   

14.
The metabolism of 25-hydroxyvitamin D(3) was studied with a crude mitochondrial cytochrome P450 extract from pig kidney and with recombinant human CYP27A1 (mitochondrial vitamin D(3) 25-hydroxylase) and porcine CYP2D25 (microsomal vitamin D(3) 25-hydroxylase). The kidney mitochondrial cytochrome P450 catalyzed the formation of 1alpha,25-dihydroxyvitamin D(3), 24,25-dihydroxyvitamin D(3) and 25,27-dihydroxyvitamin D(3). An additional metabolite that was separated from the other hydroxylated products on HPLC was also formed. The formation of this 25-hydroxyvitamin D(3) metabolite was dependent on NADPH and the mitochondrial electron transferring protein components. A monoclonal antibody directed against purified pig liver CYP27A1 immunoprecipitated the 1alpha- and 27-hydroxylase activities towards 25-hydroxyvitamin D(3) as well as the formation of the unknown metabolite. These results together with substrate inhibition experiments indicate that CYP27A1 is responsible for the formation of the unknown 25-hydroxyvitamin D(3) metabolite in kidney. Recombinant human CYP27A1 was found to convert 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), 25,27-dihydroxyvitamin D(3) and a major metabolite with the same retention time on HPLC as that formed by kidney mitochondrial cytochrome P450. Gas chromatography-mass spectrometry (GC-MS) analysis of the unknown enzymatic product revealed it to be a triol different from other known hydroxylated 25-hydroxyvitamin D(3) metabolites such as 1alpha,25-, 23,25-, 24,25-, 25,26- or 25,27-dihydroxyvitamin D(3). The product had the mass spectrometic properties expected for 4beta,25-dihydroxyvitamin D(3). Recombinant porcine CYP2D25 converted 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3) and 25,26-dihydroxyvitamin D(3). It can be concluded that both CYP27A1 and CYP2D25 are able to carry out multiple hydroxylations of 25-hydroxyvitamin D(3).  相似文献   

15.
We synthesized all eight possible A-ring diastereomers of 2-methyl substituted analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and also all eight A-ring diastereomers of 2-methyl-20-epi-1alpha,25(OH)2D3. Their biological activities, especially the antagonistic effect on non-genomic pathway-mediated responses induced by 1alpha,25(OH)2D3 or its 6-s-cis-conformer analog, 1alpha,25(OH)2-lumisterol3, were assessed using an NB4 cell differentiation system. Antagonistic activity was observed for the 1beta-hydroxyl diastereomers, including 2beta-methyl-1beta,25(OH)2D3 and 2beta-methyl-3-epi-1beta,25(OH)2D3. Very interestingly, 2beta-methyl-3-epi-1alpha,25(OH)2D3 also antagonized the non-genomic pathway, despite its 1alpha-hydroxyl group. Other 1alpha-hydroxyl diastereomers did not show antagonistic activity. 20-epimerization diminished the antagonistic effect of all of these analogs on the non-genomic pathway. These findings suggested that the combination of the 2-methyl substitution of the A-ring and 20-epimerization of the side chain could alter the biological activities in terms of antagonism of non-genomic pathway-mediated biological response. Based on a previous report, 2-methyl substitution alters the equilibrium of the A-ring conformation between the alpha- and beta-chair conformers. The 2beta-methyl diastereomers, which exhibited antagonism on non-genomic pathway-mediated response, were considered to prefer the beta-conformer. Further examination to elucidate the relationship between the altered ligand shape and receptors interaction will be important for molecular level understanding of the mechanism of antagonism of the non-genomic pathway.  相似文献   

16.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is under phase III clinical trials in Japan for the treatment of osteoporosis and bone fracture prevention. Since ED-71 has a substituent at the 2beta-position of the A-ring, it is recognized that the metabolic pathway of ED-71 might be more complicated than 1,25(OH)(2)D(3) because of metabolism at the 2beta-position substituent in addition to the inherent metabolism of the side chain. To clarify the metabolism of hydroxypropoxy substituent of the 2beta-positon and a combination of metabolism between side chain and 2beta-positon, four putative metabolites of ED-71 have been prepared as authentic samples. The metabolites at the 2beta-positon, the methyl ester derivative considered as an ester standard of the oxidized metabolite and the tetraol derivative as the truncated metabolite were synthesized from alpha-epoxide, a key intermediate of ED-71 synthesis. The combination metabolites between side chain and 2beta-positon, the 24(S)- and 24(R)-pentaols were synthesized using Trost's convergent method.  相似文献   

17.
18.
A simplified method for the determination of 25-hydroxy and 1α,25-dihydroxy metabolites of vitamins D2 and D3 in human plasma was developed. Plasma samples were deproteinizated and applied to a Bond Elut C18 OH cartridge to separate 25-hydroxyvitamin D (25-OH-D) and 1α-25-dihydroxyvitamin D [1,25(OH)2D] fractions. The 25-OH-D fraction was purified by a Bond Elut C18 cartridge and 25-OH-D2 and 25-OH-D3 were assayed by HPLC using a Zorbax SIL column. The 1,25(OH)2D fraction obtained above was subsequently applied to HPLC using a Zorbax SIL column to separate 1,25(OH)2D2 and 1,25(OH)2D3 fractions which were determined by a radioreceptor assay (RRA) using calf thymus receptor. The method was applied to nutritional studies.  相似文献   

19.
20.
Human breast cancer cell lines have been shown to possess high affinity receptors for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and their growth is inhibited by this steroid. The present study examines the effect of 1,25(OH)2D3 on the activity of glucose-6-phosphate dehydrogenase (G6PD) in cells of a human breast cancer cell line MCF-7. G6PD, an enzyme which controls the hexose monophosphate shunt, is elevated and sensitive to 17 beta-estradiol in breast tumors. G6PD activity was stimulated by 1,25(OH)2D3 in a dose-dependent manner at very low concentrations of steroid (10(-10)-10(-12) M). 1,25(OH)2D3 increased maximum velocity without modifying the affinity constant of the enzyme for glucose-6-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号