首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
Treatment of human U-937 myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with activation of the stress-activated protein kinase (SAPK) and induction of terminal monocytic differentiation. The present studies demonstrate that TPA targets SAPK to mitochondria by a mechanism dependent on activation of protein kinase C (PKC) beta. Translocation of SAPK to mitochondria in response to TPA is associated with release of cytochrome c, caspase-3 activation and induction of apoptosis. The results show that TPA induces the association of SAPK with the mitochondrial anti-apoptotic Bcl-x(L) protein. Overexpression of Bcl-x(L) attenuated the apoptotic response to TPA treatment. Moreover, expression of Bcl-x(L) mutated at sites of SAPK phosphorylation (Thr-47, -115) was more effective than wild-type Bcl-x(L) in abrogating TPA-induced cytochrome c release and apoptosis. By contrast, expression of Bcl-x(L) had little effect on induction of the monocytic phenotype. These findings indicate that myeloid leukemia cells respond to TPA with targeting of SAPK to mitochondria and that this response contributes to terminal differentiation through the release of cytochrome c and induction of apoptosis.  相似文献   

5.
Human myeloid leukemia cells respond to 12-O-tetradecanoylphorbol-13-acetate (TPA) and other activators of protein kinase C (PKC) with induction of monocytic differentiation. The present studies demonstrated that treatment of U-937 and HL-60 myeloid leukemia cells with TPA, phorbol-12,13-dibutyrate, or bryostatin 1 was associated with the induction of stress-activated protein kinase (SAPK). In contrast, TPA-resistant TUR and HL-525 cell variants deficient in PKCβ failed to respond to activators of PKC with the induction of SAPK. A direct role for PKCβ in TPA-induced SAPK activity in TUR and HL-525 cells that stably express PKCβ was confirmed. We showed that TPA induced the association of PKCβ with MEK kinase 1 (MEKK-1), an upstream effector of the SAPK/ERK kinase 1 (SEK1)→SAPK cascade. The results also demonstrated that PKCβ phosphorylated and activated MEKK-1 in vitro. The functional role of MEKK-1 in TPA-induced SAPK activity was further supported by the demonstration that the expression of a dominant negative MEKK-1 mutant abrogated this response. These findings indicate that PKCβ activation is necessary for activation of the MEKK-1→SEK1→SAPK cascade in the TPA response of myeloid leukemia cells.  相似文献   

6.
Treatment of human U-937 myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with protein kinase C (PKC) betaII-mediated activation of the stress-activated protein kinase (SAPK) pathway. The present studies demonstrate that the TPA response of U-937 cells includes the generation of reactive oxygen species (ROS). By contrast, the TPA-resistant U-937 cell variant (TUR), which is deficient in PKCbetaII expression, failed to respond to TPA with the induction of ROS. Moreover, we show that TPA-induced ROS production is restored in TUR cells stably transfected to express PKCbetaII. The results also demonstrate that TPA-induced ROS production is required for activation of the MEK kinase-1 (MEKK-1)--> SAPK pathway. In concert with this observation, treatment of U-937 with H(2)O(2) as a source of ROS is associated with activation of the MEKK-1-->SAPK cascade. These findings indicate that PKCbetaII is required for TPA-induced ROS production and that the MEKK-1-->SAPK pathway is activated by a ROS-mediated mechanism.  相似文献   

7.
8.
Macrophage-like development of myeloid leukemia cells which can be induced by agents such as phorbol esters (TPA) is accompanied by integrin expression and cell adhesion. Thus, in differentiating myeloid leukemia cells CD11b is predominantly expressed which can associate with CD18 to form the functional heterodimeric integrin Mac-1. To elucidate the role of cell adhesion during macrophage-like differentiation, we transfected human U937 myeloid leukemia cells with a vector containing the CD11b gene in antisense orientation. Expression of the CD11b antisense gene in stably transfected U937 cells (as-CD11b cells) resulted in an attenuated response to TPA. As-CD11b cells demonstrated poor adhesion to solid substrate upon TPA treatment in contrast to U937 control cells. Constitutive expression of c-myc in as-CD11b transfectants was higher than in control cells and failed to be repressed by TPA treatment. Moreover, unlike control cells, antisense transfectants failed to induce expression of early response genes such as c-jun and the redox factor ref-1 upon TPA stimulation. Consequently, the induction of monocytic differentiation markers such as the activity of alpha-naphthyl acetate esterase, the capacity to reduce nitroblue tetrazolium and the expression of the vimentin gene was much lower in antisense transfectants than in control U937 cells. According to the failure to undergo a monocytic differentiation program, TPA treatment of as-CD11b cells resulted in a progressively increasing amount of apoptotic cells whereas the differentiated population of U937 control cells remained alive. Taken together, these data suggest that the integrin-mediated (particularly CD11b-mediated) adhesion of myeloid leukemia cells in the course of induced monocytic differentiation is crucial for cell attachment, development of a monocytic phenotype and subsequent survival.  相似文献   

9.
Treatment of five human myeloid leukemic cell lines (KG1, ML3, HL-60, U-937, and HEL) with TPA was followed by macrophage differentiation and was accompanied by an early and transient increase in the mRNA level of c-fos proto-oncogene. The induction of c-fos was also observed in human cell lines K562 and K-Gla that did not respond to TPA with terminal macrophage differentiation. The treatment of HL-60 and U-937 cell lines with 1-oleoyl-2-acetylglycerol, a synthetic analog of diacylglycerol that, like TPA, stimulates protein kinase C activity, was followed by early and transient induction of c-fos mRNA in the absence of terminal macrophage differentiation. Finally, treatment of HL-60 with TPA in the presence of retinal, an inhibitor of protein kinase C, drastically reduced the induction of c-fos mRNA but had no effect on the terminal macrophage differentiation that is induced in this cell line by TPA. These results indicate that the induction of c-fos and terminal macrophage differentiation in response to TPA treatment can be dissociated in the in vitro models provided by human myeloid leukemic cell lines. Moreover, these findings suggest that the induction of c-fos is not only insufficient but may also be unnecessary for the differentiation along the monocyte-macrophage pathway.  相似文献   

10.
ABSTRACT: Previous work has demonstrated that phorbol ester (TPA)-induced adherence of human U937 myeloid leukemia cells can be blocked upon down-modulation of the β2-integrin CD11b after stable transfection of U937 cells with a pMTH1 vector-containing the CD11b gene in antisense orientation (asCD11b-U937) [Otte et al., (2011)]. In the present study, alterations in metabolism-associated factors, particularly intra- and extracellular proteases were investigated. A measurement of telomerase activity in the leukemic cells revealed continuously decreasing telomere adducts within 72?h of TPA treatment in pMTH1-U937 cells. In contrast, telomerase activity sustained in asCD11b-U937 upon TPA-induced differentiation. Flow cytometric analysis confirmed unchanged CD11b levels in TPA-induced asCD11b-U937 in contrast to elevated levels in pMTH1-U937 whereby the expression of other β2-integrins including CD11a, CD11c and CD18 was increased in both populations after TPA treatment. Moreover, adherent pMTH1-U937 demonstrated the expression of monocytic differentiation markers including F4-80 and CD14 and an increased MIP-1α production which remained at low or undetectable in TPA-induced asCD11b-U937. These effects indicated an altered response of the different cell populations to the TPA-induced differentiation process. Indeed, Western blot analysis revealed differences in the expression levels of intracellular metabolic factors including MnSOD and p97/VCP and after measurement of 20?S proteasomal proteolytic activity. In addition, increased levels of extracellular metabolic factors including the matrix metalloproteinases MMP-1, MMP-7 and MMP-9 were observed in pMTH1-U937 cells in contrast to unaltered levels in asCD11b-U937 cells.  相似文献   

11.
12.
13.
14.
Activation of PKC with 5 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h in human U937 myeloid leukemia cells is associated with induction of adherence, followed by monocytic differentiation and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these effects about 25% of U937 cells accumulated in an apoptotic subG1 phase after TPA treatment. The appearance of these apoptotic suspension cells was detectable throughout the time course of the culture and was independent of TPA concentrations between 0.5 and 500 nM. Experiments with cells synchronized by centrifugal elutriation revealed dominant susceptibility of G1-phase cells to TPA-mediated apoptosis. While adherent cells expressed differentiation markers including the integrin CD11c, this effect was less pronounced in the TPA-treated suspension fraction. Moreover, previous work has demonstrated cell cycle arrest in differentiating U937 cells. Accordingly, PKC activation by TPA treatment was associated with a significant expression of the cdk/cyclin inhibitor p21WAF/CIP/sdi-1 in the adherent population and subsequent G0/G1 cell cycle arrest. In contrast, suspension cells failed to induce significant levels of p21WAF/CIP/sdi-1 after TPA stimulation. Immunoblotting experiments demonstrated no difference in the expression of the pro-apoptotic factors Bax, Bad, and Bak in either control U937 and TPA-treated adherent or suspension cells, respectively. However, anti-apoptotic factors including Bcl-2, Bcl-xL, and Mcl-1 were significantly induced in the adherent population whereas no induction was detectable in the suspension cells. In this context, incubation with the caspase-3/caspase-7 specific tetrapeptide inhibitor DEVD prior to TPA treatment prevented an accumulation of cells in subG1, respectively, demonstrating an involvement of these caspases. Taken together, these data suggest that PKC activation can relay distinct signaling pathways such as induction of adherence coupled with monocytic differentiation and growth arrest, or induction of caspase-mediated apoptosis coupled with the failure to adhere and to differentiate.  相似文献   

15.
16.
17.
Earlier studies have indicated that Jun/AP-1 activity is associated with, and probably required for apoptosis induction by DNA-damaging and stress-inducing agents in human myeloid cells. To investigate this possibility, we examined the capacity of continuous treatments with etoposide (10 microM) and camptothecin (0.4 microM), and pulse treatments with X-rays (20 Gy), heat (2 h at 42.5 C) and cadmium chloride (2 h at 200 microM) followed by recovery, to provoke apoptosis and to simulate c-jun and c-fos expression and AP-1 binding in U-937 human promonocytic cells. All these treatments generated apoptosis with similar efficacy (50-60% apoptotic cells at 6 h of treatment or recovery). However, the capacity to increase c-jun and c-fos mRNA levels and to stimulate AP-1 binding was very different, ranging from more than a twelve-fold increase in the case of cadmium, to almost no increase in the case of heat-shock and etoposide. When the cells were pre-conditioned with a soft heat shock (1 h at 42 degrees C) the cadmium-provoked apoptosis was greatly inhibited, but the stimulation of AP-1 binding was not affected. The administration of cAMP-increasing agents also reduced the etoposide- and cadmium-provoked apoptosis. However, cAMP greatly stimulated c-jun and c-fos expression and AP-1 binding when applied together with etoposide (which itself was ineffective), and potentiated the cadmium-induced AP-1 binding. Conversely, retinoic acid abrogated the cadmium-provoked stimulation of AP-1 binding and transactivation capacity, and greatly inhibited the stimulation of binding caused by camptothecin and X-rays. However, retinoic acid did not inhibit the induction of apoptosis by these agents. These results indicate that Jun/AP-1 activity is not necessarily coupled with apoptosis, nor required for apoptosis induction by DNA-damaging and stress-inducing agents in human promonocytic cells.  相似文献   

18.
19.
A group of potential differentiation-associated genes had been identified by microarray analysis as c-Jun/AP-1 target genes essential for epithelial differentiation program. Our previous study showed that c-Jun/AP-1 could bind and activate these gene promoters in vivo using chromatin immunoprecipitation. To further understand how the mitogen-activated protein kinase signaling pathways regulate AP-1 activity and expression of c-Jun target genes, our strategy was based on the use of 12-o-tetradecanoylophorbol-13-acetate (TPA) and pharmacological reagents to induce or block c-Jun expression. The mRNA and protein expression of these genes increased in response to TPA-induced c-Jun/AP-1 expression. Inhibitors of JNK (SP600125) and PKC (GF109203X) mainly blocked expression and phosphorylation of c-Jun, while inhibition of MEK-ERK activity with PD98059 (an inhibitor of MEK) had little effect. Expression of involucrin and keratin 4 in response to TPA was attenuated by pretreatments with GF109203X and SP600125, but not PD98059, suggesting involvement of PKC and JNK in this response. Taken together, these results suggested that differentiation-associated genes were regulated by TPA-induced c-Jun/AP-1 mainly via a PKC/JNK pathway in esophageal cancer cell line KYSE450.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号