首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
血管中的血氧饱和度(Oxygen saturation,St O2)作为影响血管靶向光动力疗法(Vascular targeted photodynamic therapy,V-PDT)疗效的关键要素之一,实验测量了活体裸鼠背皮窗模型中血管的漫反射光谱(450-800nm),并通过拟合漫反射光谱数据定量获得了血管中的St O2。同时,研究了高氧、低氧和常氧等三种不同氧条件下V-PDT中血管的St O2和血管管径的变化情况。结果表明,高氧和常氧条件下的平均St O2和血管收缩较为显著,但低氧组的平均St O2和血管收缩不明显。在相同氧条件和不同光照功率密度条件下,V-PDT前后靶向血管的平均St O2与血管管径的变化之间没有显著相关性,但V-PDT前后平均St O2的变化量与光照功率密度之间呈正相关。  相似文献   

2.
以血管新生抑制剂和血管阻断剂为代表的肿瘤血管靶向药物作为一种新的抗肿瘤疗法,其研究与开发已取得显著进展,尤其是二者联用已在临床实践中获得更好疗效。因而,近年来具有新生血管抑制和血管阻断双重作用的肿瘤血管靶向药物研究备受关注。这种具双重作用的肿瘤血管靶向药物因同时保持了血管新生抑制剂和血管阻断剂的各自作用特点,在临床肿瘤治疗上更具优势,不仅能一药多靶,增强抗肿瘤疗效,同时还可降低用药剂量,减少毒副作用,提高用药耐受性,故临床应用前景广阔。综述新生血管抑制剂和血管阻断剂的作用机制及特点,介绍具代表性的兼有新生血管抑制和血管阻断双重作用的肿瘤血管靶向药物研究进展。  相似文献   

3.
血管生成在肿瘤的发生发展过程中起着非常重要的作用。促血管生成因子及其受体可以通过调节血管生成促进肿瘤发生发展。因此,发现和开发靶向血管生成因子药物已经成为治疗肿瘤的重要策略。近年来,天然产物因其结构多样、毒副作用低及作用机制独特等优势已然成为开发抗肿瘤药物的主要来源。本文归纳阐述了近年来靶向血管生成因子具有抗肿瘤活性的天然产物研究进展,为进一步发现和开发靶向肿瘤血管生成的天然药物提供重要的理论依据。  相似文献   

4.
血管外膜作为调节血管功能关键因子的生成、储存和释放的重要部位,在某些条件下被认为可能是血管壁的损伤感受组织。外膜细胞通常首先响应血管应激或损伤,进而影响血管壁的结构和功能。越来越多的证据表明,在低氧及相关的肺动脉高压、动脉粥样硬化等疾病引起的血管重塑过程中外膜的改变是最早、最突出的。成纤维细胞在血管对局部微环境改变的适应调节方面发挥了重要的作用。本文重点就血管外膜在低氧诱导血管重塑中的作用及其可能的分子机制进行综述。  相似文献   

5.
简介聚二磷酸腺苷核糖聚合酶-1(PARP-1)及其功能和在DNA 损伤修复中的作用,综述PARP-1 抑制剂的作用机制、发展现状以及在上皮性卵巢癌治疗中的应用,并探讨PARP-1 抑制剂靶向治疗上皮性卵巢癌的临床试验失败原因,展望PARP-1 抑制剂的应用前景,提出需对PARP-1 抑制剂在用于治疗上皮性卵巢癌中的耐药机制和选择性展开深入研究。  相似文献   

6.
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素。以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。文章对斑马鱼作为心血管系统研究模型的优势及其血管研究方法做一阐述,重点对斑马鱼VEGF及其受体的最新研究进展做了介绍,并展望了其发展前景。  相似文献   

7.
脉管系统的结构,维护及重塑的精确调节对于血管的正常发育,组织损伤的应答和肿瘤的生长都是必不可少的。最近,越来越多的研究报道了非编码的RNAs,又叫做microRNAs调节内皮细胞对血管原刺激的应答反应。在体内,维持血管内皮细胞和血管的完整性方面miR-126是一种重要的血管生成信号调节因子。miR-126通过负性调控血管生长因子促进血管发生反应,这些血管因子包括血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子(bFGF)。因此,miR-126表达的靶向作用也许对于血管过多或缺乏引起的相关疾病开辟了一种新的治疗方法,这些发现也证实了单一miRNA能够调节血管的完整性及血管生成,为调整血管的形态和功能提供了一个新的靶点。本文就当前miR-126对血管的调节及分子机制进行综述。  相似文献   

8.
NGR(Asn-Gly-Arg)是通过噬菌体展示技术筛选出来的能够和肿瘤新生血管特异结合的三肽模体,可以通过内皮细胞上的氨肽酶N(aminopeptidase N,亦称CD13)与新生血管发生特异性的结合。NGR多肽可以将多种药物分子和病毒载体靶向运输到肿瘤或者进行血管再生的组织中。NGR模体上的天冬酰胺脱酰胺后生成异天冬氨酸-甘氨酸-精氨酸异构体(isoDGR)。isoDGR是整联蛋白αvβ3的配体,可以作为一种新的肿瘤新生血管靶向肽用于肿瘤靶向治疗的研究。本文主要对NGR模体的结构和功能以及其在肿瘤靶向治疗中的应用作一综述。  相似文献   

9.
蛋白酶在胚胎发育、免疫防御、损伤修复、血管新生及肿瘤转移等相关细胞迁移过程中发挥关键作用.近年,蛋白酶影响肿瘤细胞侵袭、迁移的机制研究渐成热点,但肿瘤细胞免疫逃逸、增生、迁移、侵袭、异位定植等机制仍不明确,因此对相关蛋白酶的功能和作用机制的研究愈显重要.本文从蛋白酶的正常生理功能入手,综述肿瘤细胞迁移中相关蛋白酶的研究进展,以期为靶向肿瘤浸润和迁移过程的蛋白酶抑制剂类新药筛选和研发提供线索和新思路.  相似文献   

10.
光学成像技术在体研究肿瘤的光动力效应   总被引:2,自引:0,他引:2       下载免费PDF全文
光动力疗法 (PDT) 已发展成为一种较成熟的肿瘤治疗方法, PDT 诱导的血管损伤是杀死肿瘤的重要机制之一 . 为了在活体肿瘤模型上实时监测 PDT 导致的血管损伤效应,使用稳定高表达绿色荧光蛋白 (GFP) 的人涎腺腺样囊性癌细胞株 (ACC-M-GFP) ,建立了基于鸡胚尿囊膜 (CAM) 的肿瘤模型 . 应用荧光成像技术对肿瘤的生长位置、大小,以及治疗区域进行方便精确的定位;利用激光散斑成像技术,实时监测 CAM 上肿瘤周围血管的血液动力学参数 . 发现不同光动力剂量所导致的血管损伤有显著不同 . 结果表明,荧光标记的鸡胚尿囊膜肿瘤模型为研究 PDT 导致的血管损伤效应提供了良好的实验模型,激光散斑成像技术适用于实时监测 PDT 过程中血管结构、血流速度的变化,由此得出血液灌注率可用以评估 PDT 对肿瘤周围血管的损伤效应 .  相似文献   

11.
Vascular proteomics: linking proteomic and metabolomic changes   总被引:2,自引:0,他引:2  
Mayr M  Mayr U  Chung YL  Yin X  Griffiths JR  Xu Q 《Proteomics》2004,4(12):3751-3761
  相似文献   

12.
Vascular effects of oxygen-derived free radicals   总被引:5,自引:0,他引:5  
This review attempts to summarize the available data regarding the vascular actions of free oxygen radicals. Studies on blood vessels in situ and in vitro demonstrate that free oxygen radicals can evoke both vasodilation and vasoconstriction. Free oxygen radicals can modulate the tone of vascular smooth muscle by acting directly on the smooth muscle cells, and also via indirect mechanisms by changes in the production or biological activity of vasoactive mediators. The individual oxygen radicals may have different (sometimes opposite) vascular effects. Superoxide anion inactivates endothelium-derived relaxing factor and the adrenergic neurotransmitter norepinephrine. Hydrogen peroxide and the hydroxyl radical evoke vasodilation by acting directly on vascular smooth muscle and also by stimulating the synthesis/release of endothelium-derived relaxing factor. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. Production of oxygen-derived free radicals by activated neutrophils may be responsible for vasodilation and increased permeability of capillary membrane during the acute inflammatory process. Free oxygen radicals also play an important role in reperfusion injury of various organs, and vascular actions of the free radicals may contribute to the damage of parenchymal tissues.  相似文献   

13.
Atherosclerosis is the principal cause of myocardial infarction, stroke, and peripheral vascular disease, accounting for nearly half of all mortality in developed countries. For example, it has been estimated that atherosclerosis leads to approximately 500,000 deaths from coronary artery disease and 150,000 deaths from stroke every year in the United States (American Heart Association, 1996). Percutaneous transluminal angioplasty has become a well-established technique for revascularization of occluded arteries. However, the long-term efficacy of the procedure remains limited by progressive vessel renarrowing (restenosis) within the following few months after angioplasty. Abnormal vascular smooth muscle cell (VSMC) proliferation is thought to play an important role in the pathogenesis of both atherosclerosis and restenosis. Accordingly, considerable effort has been devoted to elucidate the mechanisms that regulate cell cycle progression in VSMCs. In the present article, we will review the different factors that are involved in the control of VSMC proliferation, especially in the context of cardiovascular disease. Ultimately, a thorough understanding of these regulatory networks may lead to the development of novel drug and gene therapies for the treatment of cardiovascular diseases. Therapeutic approaches that targeted specific cell-cycle control genes or growth regulatory molecules which effectively inhibited neointimal lesion formation will be also discussed.  相似文献   

14.
Vascular endothelium: the battlefield of dengue viruses   总被引:1,自引:0,他引:1  
Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS.  相似文献   

15.
Blood flow and pO2 changes after vascular-targeted photodynamic therapy (V-PDT) or cellular-targeted PDT (C-PDT) using 5,10,15,20-tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl) bacteriochlorin (F2BMet) as photosensitizer were investigated in DBA/2 mice with S91 Cloudman mouse melanoma, and correlated with long-term tumor responses. F2BMet generates both singlet oxygen and hydroxyl radicals under near-infrared radiation, which consume oxygen. Partial oxygen pressure was lowered in PDT-treated tumors and this was ascribed both to oxygen consumption during PDT and to fluctuations in oxygen transport after PDT. Similarly, microcirculatory blood flow changed as a result of the disruption of blood vessels by the treatment. A novel noninvasive approach combining electron paramagnetic resonance oximetry and laser Doppler blood perfusion measurements allowed longitudinal monitoring of hypoxia and vascular function changes in the same animals, after PDT. C-PDT induced parallel changes in tumor pO2 and blood flow, i.e., an initial decrease immediately after treatment, followed by a slow increase. In contrast, V-PDT led to a strong and persistent depletion of pO2, although the microcirculatory blood flow increased. Strong hypoxia after V-PDT led to a slight increase in VEGF level 24 h after treatment. C-PDT caused a ca. 5-day delay in tumor growth, whereas V-PDT was much more efficient and led to tumor growth inhibition in 90% of animals. The tumors of 44% of mice treated with V-PDT regressed completely and did not reappear for over 1 year. In conclusion, mild and transient hypoxia after C-PDT led to intense pO2 compensatory effects and modest tumor inhibition, but strong and persistent local hypoxia after V-PDT caused tumor growth inhibition.  相似文献   

16.
Vascular rejection that leads to transplant arteriosclerosis (TA) is the leading representation of chronic heart transplant failure. In TA, the immune system of the recipient causes damage of the arterial wall and dysfunction of endothelial cells and smooth muscle cells. This triggers a pathological repair response that is characterized by intimal thickening and luminal occlusion. Understanding the mechanisms by which the immune system causes vasculature rejection and TA may inform the development of novel ways to manage graft failure. Here, we describe a mouse aortic interposition model that can be used to study the pathogenic mechanisms of vascular rejection and TA. The model involves grafting of an aortic segment from a donor animal into an allogeneic recipient. Rejection of the artery segment involves alloimmune reactions and results in arterial changes that resemble vascular rejection. The basic technical approach we describe can be used with different mouse strains and targeted interventions to answer specific questions related to vascular rejection and TA.  相似文献   

17.
This article reviews the historical evolution of hepatic vascular clamping and their indications. The anatomic basis for partial and complete vascular clamping will be discussed, as will the rationales of continuous and intermittent vascular clamping. Specific techniques discussed and described include inflow clamping (Pringle maneuver, extra-hepatic selective clamping and intraglissonian clamping) and outflow clamping (total vascular exclusion, hepatic vascular exclusion with preservation of caval flow). The fundamental role of a low Central Venous Pressure during open and laparoscopic hepatectomy is described, as is the difference in their intra-operative measurements. The biological basis for ischemic preconditioning will be elucidated. Although the potential dangers of vascular clamping and the development of modern coagulation devices question the need for systemic clamping; the pre-operative factors and unforseen intra-operative events that mandate the use of hepatic vascular clamping will be highlighted.  相似文献   

18.
血管内皮细胞发育及分子机制   总被引:1,自引:0,他引:1  
王旭  熊敬维 《遗传》2012,34(9):1114-1122
心血管系统是胚胎发育中最先形成的器官之一, 为机体提供营养成分和氧气。血管发育包括两部分, 一是内皮祖细胞(Angioblast)聚集形成血管原基(Vasculogenesis), 二是从已有血管形成新的血管分支(Angiogenesis)。此后由初级内皮细胞管召集平滑肌细胞形成功能性血管(Vessel maturation)。内皮祖细胞起源途径包括:由Flk1阳性中胚层细胞到成血成血管细胞(Hemangioblast)到血管内皮祖细胞; 或由Flk1阳性中胚层细胞直接到血管内皮祖细胞。Flk1阳性中胚层细胞受到vegf、flk1、cloche、lycat、etsrp等关键基因或信号通路的调节, 其中核心问题是原肠期中胚层如何形成Flk1阳性中胚层细胞及进一步分化成血管内皮祖细胞和成血血管细胞。文章集中评述内皮祖细胞发育、分化及其分子遗传调控机制, 并展望本领域未来发展方向。  相似文献   

19.
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.  相似文献   

20.
Space flight induces many changes within the cardiovascular system that have the potential during long-duration space missions on the International Space Station to result in structural and functional changes in the vascular system. In this paper, we will first briefly review the potential changes in reflex control of the vascular system as observed primarily in short-duration studies of humans. We will then show how the reflex responses might interact with other changes anticipated during long-duration missions based on evidence from animal and human experimentation. This evidence points to the potential for changes in blood vessel structure, metabolism and responses to vasodilator and constrictor substances that might have long-term health consequences paralleling the effects of aging on the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号