首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the net tissue fatty acid deposition in response to graded levels of energy restriction and modification of diet fatty acid composition, rats were randomly assigned into four dietary groups and fed for 10 weeks diets containing 40% as energy of either fish, safflower, or olive oil, or beef tallow, consumed ad libitum or energy restricted to 85% or 68% of ad libitum intake by reducing diet carbohydrate content. An additional eight rats were killed before the diet regimen, to provide baseline data from which fatty acid deposition rates were calculated. Body weight, and heart, liver and fat mass gains were decreased with energy restriction (P<0.001). Olive oil feeding resulted in higher body weight gain (P < 0.03) than tallow feeding, whereas fish oil feeding was associated with highest (P < 0.007) liver weight and lowest (P < 0.03) fat mass gains. Energy deficit-related differences in the deposition of stearic, linoleic, arachidonic, and docosahexaenoic acids in heart and palmitic and docosahexaenoic acids in liver were dependent on the dietary oil consumed (P < 0.03). Similarly, interactive effects of restricted food intake and dietary oil type were found in the gain of palmitic, stearic, oleic, and linoleic acids in adipose tissue (P < 0.01) when expressed in relation to the amount of each fatty acid consumed. These data suggest that energy intake level can influence the deposition pattern, as well as oxidation rate, of tissue fatty acids as a function of tissue type, fatty acid structure, and dietary fatty acid composition.  相似文献   

2.
Summary Small amounts of dietary n-3 fatty acids can have dramatic physiological effects, including the reduction of plasma triglycerides and an elevation of cellular eicosapentanoic (EPA) and docosahexanoic acids (DHA) at the expense of arachidonic acid (AA). We investigated the effects of alterations in the fatty acid compositions of cardiac sarcoplasmic reticulum (CSR) produced by dietary manipulation on the calcium pump protein that is required for energy dependent calcium transport. CSR was isolated from rats fed menhaden oil, which is rich in n-3 fatty acids, and from control animals that were given corn oil. Relative to control membranes, those isolated from rats fed menhaden oil, had a lower content of saturated phospholipids, an increased DHA/AA ratio, and an increased ratio of n-3 to n-6 fatty acids. These changes were associated with a 30% decrease in oxalate-facilitated, ATP-dependent calcium uptake and concomitant decreased Ca-ATPase activity in the membranes from the animals fed menhaden oil. In contrast, there was no alteration in active pump sites as measured by phosphoenzyme formation. Thus, the CSR Ca-ATPase function can be altered by dietary interventions that change the composition, and possibly structure, of the phospholipid membranes thereby affecting enzyme turnover.  相似文献   

3.
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end‐uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild‐type, cgi‐58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High‐leaf‐oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co‐expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant–pest interactions are discussed.  相似文献   

4.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

5.
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.  相似文献   

6.
Lipids in Cruciferae   总被引:1,自引:0,他引:1  
Diploid and tetraploid types of white mustard (Sinapis alba) and turnip rape (Brassica campestris), annual and biennial forms, were grown in Turkey and in Sweden. Seed weight and oil content were measured and fatty acid composition determined by gas chromatography. Polyploidization of all cultivars effected an increase in seed size but did not markedly change the oil percentage or fatty acid composition. Growing conditions in Turkey caused an over-all decrease in seed size although the oil content was reduced only in the spring Turkish plantings. Fatty acid composition was influenced by the environment to a small but probably significant extent in all cultivars. For Swedish and Turkish winter turnip rape the mean content of oleic acid was 13.7 per cent and 15.8 per cent, of linolenic acid 9.5 per cent and 8.6 per cent, of erucic acid 45.7 per cent and 42.4 per cent, respectively; no consistent differences were observed for linoieic acid. Similar differences were observed for summer turnip rape and white mustard. Thus the warmer and drier Turkish climate favoured a higher oleic acid, lower linolenic and erucic acid content, i.e. a reduction in the per centage of the major end products of fatty acid biosynthesis.  相似文献   

7.
以国际半干旱热带地区作物研究所(ICRISAT)花生微核心种质为材料,系统分析测试含油量和脂肪酸组成。分析结果表明,ICRISAT花生微核心种质的含油量平均为51.67%,变异范围49.16%~55.44%,珍珠豆型资源的含油量高于其他类型,发掘出高油种质1份。在主要脂肪酸中,棕榈酸平均含量10.74%,变异范围7.9%~13.5%;硬脂酸2.85%,变异范围1.8%~3.9%;油酸46.36%,变异范围37.0%~64.7%;亚油酸32.86%,变异范围18.0%~40.4%;饱和脂肪酸含量19.21%,变异范围15.2%~22.1%。普通型花生的油酸含量高于其他类型,而亚油酸和棕榈酸含量低于其他类型。发掘出高油酸种质4份,低棕榈酸种质19份,低饱和脂肪酸种质7份。通过脂肪酸组成的分析,高油酸种质和低饱和脂肪酸种质均同时具备低棕榈酸的优良特性。SSR分析结果表明,这些种质的遗传差异相对较大。根据5对SSR引物的扩增结果,绘制了20份资源的分子指纹图谱,为这些优质资源的保护和有效利用奠定了基础。  相似文献   

8.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

9.
Amino acid composition and fatty acid composition were determined on seed samples of a range of white lupin (Lupinus albus) cultivars and accessions grown in either of two environments.Variability between genotypes was found for lysine, arginine and glutamic acid content, but not for the concentrations of other amino acids. The deficiency in sulphurcontaining amino acids, typical of legume proteins, was evident, with methionine and cyst(e)ine totalling only 2.2% of the protein. Variability was limited, indicating that improvement by breeding would be impracticable. Lupinus albus differed slightly from other lupin species in amino acid composition, having higher levels of threonine, tyrosine and isoleucine, but a lower level of glutamic acid than both L. angustifolius and L. luteus. Four low-alkaloid lines of L albus each had higher lysine content than the high-alkaloid line, but ‘Kiev Mutant’, despite earlier claims, had a lysine level no higher than the other three low-alkaloid lines.Fatty acid composition of the seed oil varied considerably between genotypes. Oleic acid ranged from 43.6 to 54.4% and linolenic acid from 6.7 to 15.2%, these two fatty acids being negatively correlated at one site. Linoleic acid content varied between 17.2 and 26.9% and was not correlated with other fatty acids. Total oil content averaged 9.6% with little variability between lines.It is concluded that, relative to other lupin species, L. albus has a more favourable amino acid profile for its utilisation in cereal-based diets for animals, particularly if the energy source is wheat, which is deficient in threonine. The higher oil content would be an important energy benefit to such diets and may allow their protein/energy balance to be maintained at higher levels of incorporation of L. albus seed meal than is possible with other lupin species.  相似文献   

10.
Lipids in Cruciferae   总被引:1,自引:0,他引:1  
The effect of nitrogen, phosphorus and potassium nutrition on average seed weight, oil content and fatty acid composition of rape seed (Brassica napus) grown in soil-free culture has been studied. Nitrogen effected an increase in seed weight and a decrease in oil content, while the average amount of oil per seed remained constant. A small, but highly significant, decrease in palmitic and eicosenoic acid content, a significant decrease in oleic acid and a highly significant increase in erucic acid content were observed. This suggests that a decrease in the extent of elongation of oleic acid to erucic acid occurs in seeds developing on plants with sub-optimal levels of nitrogen nutrition. Phosphorus and potassium had very limited effects on fatty acid composition. Significant differences were found only in oleic acid content for phosphorus alone, the nitrogen-phosphorus interaction and the phosphorus-potassium interaction. The effect of various levels of sulfate at optimal levels for nitrogen, phosphorus and potassium, was studied in a separate experiment. Seed from sulfur-starved plants had decreased oil content; oleic acid percentages were increased and erucic acid percentages decreased. Excessive amounts of sulfate had no effect on fatty acid composition.  相似文献   

11.
Madia sativa seeds were studied for their oil content and fatty acid composition. Oil content in wild seeds was 26% w/w. The samples analyzed showed comparable fatty acid composition, with palmitic (12.9–14.0), stearic (3.8–3.9), oleic (7.9-10.2) and linoleic acid (71.4–72.4) as the major acids. The mean molecular weight of the oil ranges from 876.1 to 894.6 with saponification values of 190–194 mg and unsaturation values of 126–131. The seed meal showed a high crude protein content (28–31%). The oil composition of Madia sativa and its adaptability to poor soils, suggest considerable potential as a future oil crop.  相似文献   

12.
为寻求新的食用油资源,发展了一种快速可靠的气相色谱-质谱联用方法,用于植物籽油中脂肪酸成分的定性鉴定和含量测定。所建立的方法成功用于葡萄籽、南瓜籽和猕猴桃籽等七种植物籽油中的棕榈酸、十八烷酸、油酸、亚油酸和α-亚麻酸的定性定量分析。结果表明,刺葡萄籽油、普通葡萄籽油、国外葡萄籽油、南瓜籽油、枸杞籽油和西番莲籽油均具有相似的脂肪酸谱,尽管其中它们所含上述五种脂肪酸含量不同,由于均存在人体所必需的饱和与不饱和脂肪酸,故可以用作替代食用油。猕猴桃籽油因为其存在高含量的α-亚麻酸成分,可能是更好的食用油和营养油资源。本文首次对枸杞籽油、西番莲籽油和猕猴桃籽油脂肪酸成分进行绝对含量分析,为新的食用油资源的开发提供了重要的依据。  相似文献   

13.
The influence of dietary polyunsaturated fatty acids on fatty acid composition, cholesterol and phospholipid content as well as 'fluidity' (assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probes) of brain synaptic plasma membranes (SPM) and their interactions with chronic ethanol effects were studied in rats fed for two generations with diets either devoid of (n-3) fatty acids (sunflower oil diet), rich in alpha-linolenic acid (soya oil diet) or in long chain (n-3) fatty acids (sunflower + cod liver oil diet). Results were compared with rats fed standard lab chow. Sunflower oil led to an increase in the (n-6)/(n-3) ratio in the membranes with an increase of the 'fluidity' at membrane apolar level; sunflower + cod liver oil decreased the (n-6)/(n-3) ratio without affecting membrane 'fluidity' while no difference was seen between the SPM of rats fed soya oil and standard diet. After 3 weeks alcohol intoxication in rat fed the standard diet: oleic alpha-linoleic acids and cholesterol levels were increased, arachidonic acid and the double bond index/saturated fatty acids were decreased and there was a decrease of 'fluidity' in the lipid core of the SPM. Soya oil almost totally abolished these usually observed changes in the SPM fatty acids composition but increased oleic acid and cholesterol without any change in fluidity. Sunflower oil led to the same general alterations of fatty acid as seen with standard diet but to a greater extent, with decrease of the 'fluidity" at the apolar level and in the region probed by TMA-DPH. When sunflower oil was supplemented with cod liver oil, oleic and alpha-linoleic acids were increased while the 'fluidity' of the apolar core of SPM was decreased. So, the small changes in fatty acid pattern seem able to modulate neural properties i.e. the responses to a neurotoxic like ethanol. A structurally specific role of PUFA is demonstrated by the pernicious effects of the alpha-linolenic acid deficient diet which are not totally prevented by the supply of long chain (n-3) PUFA.  相似文献   

14.
Currant seeds, a by‐product of juice production, are recognized as a valuable source of oil rich in polyunsaturated fatty acids. We have evaluated 28 currant varieties for their oil content and fatty‐acid composition. The oil content in the seeds ranged from 18.2–27.7%, and no statistical difference between varieties of different fruit color were recorded. Furthermore, the estimated oil yields in the field production ranged from 26.4–212.4 kg/ha. The GC and GC/MS chemical profiles of the seed oils extracted from all examined varieties were common for currants. Linoleic acid (LA) was the major component, with contents ranging from 32.7–46.9% of total fatty acids, followed by α‐linolenic acid (ALA; 2.9–32.0 %), oleic acid (OA; 9.8–19.9%), γ‐linolenic acid (GLA; 3.3–18.5%), palmitic acid (PA; 4.4–8.1%), stearidonic acid (SDA; 2.2–4.7%), and stearic acid (SA; 1.2–2.4%). Quantitative differences in the fatty‐acid profiles between varieties of different fruit color were observed. Blackcurrant varieties showed significantly higher contents of LA, GLA, and PA than red and white currant varieties, whereas significantly higher amounts of ALA and OL were detected in the red and white varieties. Cluster analysis based on the chemical oil profiles joined the blackcurrants in one group, while most of the red and white cultivars joined in a second group at the same linkage distance.  相似文献   

15.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Male weanling Wistar rats were maintained on one of two semisynthetic diets, differing only in the type of oil used: (i) 10% by weight marine fish oil (MFO group) containing 20% eicosapentaenoic acid (EPA) and 17% docosahexaenoic acid (DHA), or (ii) 10% by weight sunflower oil (SFO group). The control group was kept on standard diet for 4 weeks. Blood-free microvessels were isolated from brain cortex by a rapid micromethod, and their fatty acid composition was determined by gas chromatography. It was found that the proportion of n-3 fatty acids (including EPA and DHA) increased significantly in the microvessels of the MFO group, accompanied by a decrease of the n-6 fatty acid series. The changes in fatty acid composition of endothelial cells were not significant in the SFO group in comparison to the control. The amounts of lipoxygenase and cyclooxygenase metabolites were determined. Dietary fish oil decreased the percentage of total products of arachidonate by 50%, while the SFO diet had no effect on it. The amount of lipoxygenase products in the MFO group decreased significantly from 16931±3131 dpm to 6399±357 dpm/300 mg wet weight of brain. Significantly less PGF-1, PGF-2 and 12-hydroxyhepta-decatrienoic acid (HHT) were found in the capillaries of MFO treated animals, in comparison to the SFO group. The ratios of vasoconstrictor and vasodilator metabolites of arachidonate cascade were not modifed by the diets. Our results suggest that fish oil diet reduces the arachidonate cascade in cerebral microvessels. This effect may explain for the efficiency of n-3 fatty acids in vascular diseases.  相似文献   

17.
黄蜀葵种子形态及其化学成分的研究   总被引:12,自引:0,他引:12  
本文报道了黄蜀葵种子的形态特征和化学成分。研究结果表明 :种子含有脂肪油 ,含量为31 16 % ,其主要成分为 :亚油酸 (82 179% )、油酸 (9 195 % )、棕榈酸 (4 75 6 % )、硬脂酸 (2 6 81% )、亚麻酸 (0 32 8% )等 ,此外 ,还含有 18种氨基酸和 2 4种矿质元素。其种子含有多种氨基酸和矿质元素 ,而且种子油含有大量人体所必需的不饱和脂肪酸 ,含量达 91 815 %。因此 ,其种子和种子油具有较高的营养价值和医疗保健功效 ,具有潜在开发利用的价值。  相似文献   

18.
The course of biosynthesis of fatty acids in the seeds of winter rape (Brassica napus L. ssp.oleifera, f.biennis cv. T?ebí?ská) was investigated. After the termination of flowering seed samples were taken at five intervals, the seeds were divided into 4 fractions according to size, and their weight, water content, oil content and fatty acid composition were determined. The oil content was found to increase in all size categories with time, with the exception of a minute drop when complete maturity is reached. Larger seeds contained more oil. The fatty acid composition changes with time in the individual size fractions almost continuously. The same holds for differences between seed sizes of the same sample. The main change in oil composition consists in the decrease of C18 acids in favour of C22 acids. Greatest decrements during maturation were found with oleic acid, less with linoleic acid. In absolute amounts the quantity of all synthesized acids rises, the greatest rise being observed with C22 acids (i.e. predominantly erucic acid). It follows from the mean rates of synthesis of the individual groups (C16, C18, C20, C22) of fatty acids that the fraction of C22 rate of synthesis increases, while that of the C18 acids decreases with the same speed. The results indicate that the fatty acid synthesis is most intense during the second half of seed maturation, the main role being played by accelerating the synthesis of higher acids, especially of erucic acid.  相似文献   

19.
Tuatara (Sphenodon, Order Sphenodontia) are rare New Zealand reptiles whose conservation involves captive breeding. Wild tuatara eat seabirds, which contain high levels of the long-chain n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids are absent from the captive diet, and consequently, plasma fatty acid composition of wild and captive tuatara differs. This study investigated the effects of incorporating EPA and DHA into the diet of captive juvenile tuatara (Sphenodon punctatus) in an attempt to replicate the plasma fatty acid composition of wild tuatara. Tuatara receiving a fish oil supplement containing EPA and DHA showed overall changes in their plasma fatty acid composition. Phospholipid EPA and DHA increased markedly, reaching 10.0% and 5.9 mol%, respectively, by 18 mo (cf. 相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号