首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Degradation of proteins mediated by the ubiquitin-proteasome pathway (UPP) plays essential roles in the eukaryotic cell cycle. The main aim of the present study was to analyze the functional roles and regulatory mechanisms of the UPP in pig oocyte meiotic maturation, activation, and early embryo mitosis by drug treatment, Western blot analysis, and confocal microscopy. By using the hypoxanthine-maintained meiotic arrest model, we showed that the meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated in a dose- and time-dependent manner by two potent and cell-permeable proteasome inhibitors. Both the mitogen-activated protein kinase (MAPK) kinase inhibitor U0126 and the maturation-promoting factor inhibitor roscovitine overcame the stimulation of germinal vesicle breakdown induced by proteasome inhibitors. The phosphorylation of MAPK and p90rsk and the expression of cyclin B1 increased in a dose- and time-dependent manner when treated with proteasome inhibitors during oocyte in vitro-maturation culture. Both U0126 and roscovitine inhibited the phosphorylation of MAPK and p90rsk, and the synthesis of cyclin B1 stimulated by proteasome inhibitors. When matured oocytes were pretreated with proteasome inhibitors and then fertilized or artificially activated, the second polar body emission and the pronuclear formation were inhibited, and the dephosphorylation of MAPK and p90rsk as well as the degradation of cyclin B1 that should occur after oocyte activation were also inhibited. We also investigated, to our knowledge for the first time, the subcellular localization of 20S proteasome alpha subunits at different stages of oocyte and early embryo development. The 20S proteasome alpha subunits were accumulated in the germinal vesicle, around the condensed chromosomes at prometaphase, with spindle at metaphase I and II, the region between the separating chromosomes, and especially the midbody at anaphase I and telophase I, the pronucleus, and the nucleus in early embryonic cells. In conclusion, our results suggest that the UPP is important at multiple steps of pig oocyte meiosis, fertilization, and early embryonic mitosis and that it may play its roles by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

2.
The role of the ubiquitin-proteasome pathway (UPP) in mitosis is well known. However, its role in meiotic division is still poorly documented, especially in the activation of mammalian oocytes. In this study, the role of proteasome in the spontaneous and parthenogenetic activation of rat oocytes was investigated. We found that ALLN, an inhibitor of proteasome, when applied to metaphase II oocytes, inhibited spontaneous activation, blocked extrusion of the second polar body (PB) and caused the withdrawal of the partially extruded second PB. ALLN also inhibited the parthenogenetic activation induced by cycloheximide, but had no effect on the formation of pronuclei in activated eggs. In metaphase and anaphase, ubiquitin and proteasome localized to the meiotic spindle, concentrating on both sides of the oocyte-second PB boundary during PB extrusion. This pattern of cellular distribution suggests that UPP may have a role in regulating nuclear division and cytokinesis. Ubiquitin was seen to form a ring around the pronucleus, whereas proteasome was evenly distributed in the pronuclear region. Taken together, our results indicate that (1) UPP is required for the transitions of oocytes from metaphase II to anaphase II and from anaphase II to the end of meiosis; and (2) the UPP plays a role in cytokinesis of the second meiotic division.  相似文献   

3.
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

5.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

6.
The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.  相似文献   

7.
利用免疫组织化学方法研究丝裂原激活蛋白激酶(mitogen-activated protein kinases, MAPK)及其底物之一p90rsk在大鼠卵泡发育过程中的表达与活性.结果表明,非活性形式的MAPK存在于大鼠各生长期卵泡的卵母细胞和颗粒细胞中,但磷酸化活性形式的MAPK只存在于部分具有分裂增殖活性的颗粒细胞中.MAPK的作用底物p90rsk只在各期卵泡的卵母细胞中表达,在颗粒细胞中无着色,说明MAPK信号级联在卵母细胞和颗粒细胞中具有不同的作用方式.另外,胎鼠卵巢的免疫组化染色结果显示,MAPK在卵原细胞增殖过程中具有活性,表明MAPK信号级联在这一过程中起作用.  相似文献   

8.
Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.  相似文献   

9.
Tong C  Fan HY  Chen DY  Song XF  Schatten H  Sun QY 《Cell research》2003,13(5):375-383
In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 microM U0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 microM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure. Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 microm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns, MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 microM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 microM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization; 2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase /p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.  相似文献   

10.
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3′,5′‐cyclic monophosphate (cAMP), guanosine 3′,5′‐cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase‐promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin‐dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase‐II (M‐II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M‐II arrest in rat oocytes.  相似文献   

11.
Zheng YH  Zheng LP  Li F  Wu L  Dai YC 《生理学报》2008,60(1):97-104
本研究探讨了原癌基因c-erbB:和c-myb对小鼠卵母细胞成熟的影响及其在调控卵母细胞成熟中与丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和成熟促进因子(mamration promoting factor,MPF)的上下游关系.c-erbB2反义寡脱氧核苷酸(antisense oligodeoxynucleotide,ASODN)和c.myb ASODN均呈剂量依赖方式抑制卵母细胞的生发泡破裂(germinalvesicle breakdown,GVBD)率和第一极体(first polar body,PBl)排放率,并显著延迟其成熟时间.小鼠卵母细胞显微注射重组人c-erbB2蛋白和c-myb蛋白后,培养6 h其GVBD率分别比对照组上升了23.1%(P<0.05)和32.2%(P<0.05),.培养12 h其PBl排放率分别比对照组上升了17.3%(P<0.05)和23.5%(P<0.05).RT-PCR结果显示,小鼠卵母细胞中存在c-erbB2mRNA和c-myb mRNA表达;c-erbB2ASODN能明显抑制卵母细胞中c-erbB2mRNA和c-myb mRNA的表达,c-myb ASODN能明显抑制卵母细胞中c-myb mRNA的表达,对c-erbB2 mRNA无明显影响;MAPK抑制剂PD98059以及MPF抑制剂roscovitine在抑制卵母细胞成熟的同时,均能阻断显微注射重组人c-erbB:蛋白和重组人c-myb蛋白对卵母细胞成熟的促进作用,但对卵母细胞中c-erbB2mRNA和c-myb mRNA表达无明显影响.Western blot结果显示,c-erbB2ASODN、c-mybASODN、PD98059、roscovitine均使卵母细胞中MAPK磷酸化水平和cyclinB 1含量下降.结果提示,原癌基因c-erbB2、c-myb在卵母细胞成熟中起重要作用,可能是调控卵母细胞成熟中关键蛋白激酶如MAPK、MPF的上游激活物.  相似文献   

12.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

13.
The effect of different oocyte activation methods on the dynamics of M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activity in porcine oocytes were examined. Three activativation methods were tested: (1) electroporation (EP); (2) electroporation combined with butyrolactone I (BL), an inhibitor of cdc2 and cdk2 kinases; (3) electroporation followed by a treatment with cycloheximide (CHX), a protein synthesis blocker. The activity of cdc2 in MII oocytes was 0.067+/-0.011pmol/oocyte/min (mean+/-S.E.M.), which by 1h decreased in every treatment group (P<0.05) and stayed at low levels until 6h post-activation, approximately the time of pronuclear formation. The initial MAPK activity (0.123+/-0.017pmol/oocyte/min) also decreased 1h after each type of activation treatment (P<0.005). However, in the electroporation only group, activity reached its lowest level at 3h; thereafter, it started to recover and at later time points, MAPK activity did not differ from that in non-treated oocytes (P>0.1). In contrast, oocytes where electroporation was followed by protein kinase or protein synthesis inhibition had low MAPK activity by the time pronuclei were to be formed. Pronuclear formation in these groups (86.3+/-3.3% for EP+BL and 87.6+/-3.7% for EP+CHX) was higher compared to that found in the EP-only oocytes (69.4+/-3.3%; P<0.05). These findings demonstrated that electroporation alone efficiently triggered the inactivation of MPF but not that of MAPK. In order to achieve low MAPK activity to allow high frequency of pronuclear formation, electroporation should be followed by a treatment that inhibits protein synthesis or specific protein kinases. The combined activation methods provided stimuli that efficiently induced both MPF and MAPK inactivation and triggered pronuclear formation with high frequencies.  相似文献   

14.
Psychological stress, which exerts detrimental effects on human reproduction, may compromise the meiotic competence of oocytes. Meiotic resumption, germinal vesicle breakdown (GVBD), is the first milestone to confer meiotic competence to oocytes. In the practice of assisted reproductive technology (ART), the timing for GVBD is associated with the rates of cleavage and blastocyst formation. However, whether chronic stress compromises oocyte competence by influencing GVBD and the underlying mechanisms are unclear. In the present study, a chronic restraint stress (CRS) mouse model was used to investigate the effects of stress on oocyte meiotic resumption, as well as the mechanisms. Following a 4-week chronic restraint stress in female mice, the percentage of abnormal bipolar spindles increased and indicated compromised oocyte competence in the CRS group. Furthermore, we identified a decreased percentage of GVBD and prolonged time of GVBD in the CRS mouse oocytes compared with the control group. CRS simultaneously reduced the expression of cyclin B1 (CCNB1), which represents a regulatory subunit of M-phase/mature promoting factor (MPF). However, MG132, an inhibitor of anaphase-promoting complex/cyclosome (APC/C), could rescue the prolonged time of GVBD and increase the expression level of CCNB1 of oocytes from the CRS mice. Collectively, our results demonstrated that stress disturbed meiotic resumption through APC/C-mediated CCNB1 degradation, thus providing a novel understanding for stress-related oocyte quality decline; moreover, it may provide a non-invasive approach to select high-quality gametes and novel targets for molecular therapy to treat stress-related female infertility.  相似文献   

15.
Although high amounts of cyclin B1 mRNA are present in bovine oocytes arrested at the germinal vesicle (GV) stage, the protein is not detectable. Furthermore, there is a depletion of the stored cyclin B1 mRNA in the oocyte as follicular growth progresses. To assess the effect of follicular growth on the accumulation of M-phase promoting factor (MPF) components, mRNA and protein levels of cyclin B1 and p34(cdc2) were measured in GV oocytes collected from diverse follicle size groups (<2 mm, 3-5 mm, and >6 mm). Because oocytes collected from very small follicles have high levels of cyclin B1 mRNA, the onset of its accumulation in the oocytes was evaluated by in situ hybridization of fetal ovaries. Also, a comparative expression map of cell cycle-related genes expressed in the oocyte and cumulus cells was established using nylon-based cDNA arrays, which allowed the detection of 35 different genes transcribed mostly in oocytes. Both components of the pre-MPF complex were expressed at the mRNA level in GV oocytes, whereas p34(cdc2) was the only pre-MPF protein detected at that stage, thus indicating that meiosis resumption in bovine oocytes is differentially regulated as compared with other mammals, and meiosis resumption seems to be regulated by the translation of cyclin B1 mRNA.  相似文献   

16.
This paper reports on the activation of p90rsk during meiotic maturation and the inactivation of p90rsk after electrical parthenogenetic activation of rat oocytes. In addition, the correlation between p90rsk and MAP kinases after different treatments was studied. We assessed p90rsk activity by examining its electrophoretic mobility shift on SDS-PAGE and evaluated ERK1+2 activity by both mobility shift and a specific antibody against phospho-MAP kinase. The phosphorylation of p90rsk during rat oocyte maturation was a sequential process that may be divided into two stages: the first stage was partial phosphorylation, which was irrelevant with MAP kinases because p90rsk phosphorylation took place prior to activation of MAP kinases. The second stage inferred full activation occurred at the time when MAP kinases began to be activated (3 h after germinal visicle breakdown). Evidence for the involvement of MAP kinases in the p90rsk phosphorylation was further obtained by the following approaches: (1) okadaic acid (OA) accelerated the phosphorylation of both MAP kinases and p90rsk; (2) OA induced phosphorylation of both MAP kinases and p90rsk in the presence of IBMX; (3) when activation of MAP kinases was inhibited by cycloheximide, p90rsk phosphorylation was also abolished; (4) dephosphorylation of p90rsk began to take place at 3 h post-activation, temporally correlated with the completion of MAP kinase inactivation; (5) phosphorylation of both kinases was maintained in oocytes that failed to form pronuclei after stimulation; (6) OA abolished the dephosphorylation of both kinases after parthenogenetic activation. Our data suggest that MAP kinases are not required for early partial activation of p90rsk but are required for full activation of p90rsk during rat oocyte maturation, and that p90rsk dephosphorylation occurs following MAP kinase inactivation after parthenogenetic activation of rat oocytes.  相似文献   

17.
The aims of the present study were to determine the role of protein kinase C (PKC) on meiotic resumption and its effects on pronuclear formation and cleavage in the bovine. Oocytes were matured in the presence of 0, 1, 10 and 100 nM of phorbol 12-myristate 13-acetate (PMA), to evaluate the percentage of germinal vesicle breakdown. To study pronuclear formation and cleavage, oocytes were randomly distributed in four groups and matured in modified TCM-199 with LH and FSH (negative control); 10% of estrous cow serum (positive control); 100 nM of PMA (treatment); 100 nM of 4alpha-PDD (phorbol ester control). Oocytes were also matured in positive control medium, fertilized and transferred to KSOM with increasing concentrations of a PKC inhibitor. The protein profile and the presence of PKC at the end of maturation period were determined by SDS-PAGE followed by Silver Stain and Western blot, respectively. PMA stimulated meiotic resumption in a concentration-dependent manner. PKC stimulation during oocyte maturation caused an increase in pronuclear formation and did not cause parthenogenetic activation. Inhibitor of PKC (MyrPKC) inhibited cleavage in a dose-dependent and irreversible manner. A protein band around 74 kDa was not detected in PMA-treated oocytes and PKC was not detected by Western blot at the end of the maturation period. In conclusion, meiotic resumption was accelerated and the rate of oocytes with two pronuclei was increased when PKC was activated during oocyte maturation. Moreover, cleavage was inhibited in the presence of PMA.  相似文献   

18.
Leptin, a multifunctional hormone, is present in mammalian oocytes and follicular fluids and cumulus cells. While leptin modulates oocyte maturation in vitro which seems to result in enhancement of embryo development, it is unclear whether leptin treatment of oocytes affects cytoplasmic maturation and fertilization processes. In order to gain a better understanding of the role of leptin during oocyte maturation, we examined microtubule and microfilament assembly following oocyte maturation and blastocyst formation, mitogen-activated protein kinase (MAPK) activity, and pronuclear formation following parthenogenetic stimuli or intracytoplasmic sperm injection (ICSI) in leptin-treated oocytes. Addition of 10 or 100 ng/ml leptin during oocyte maturation did not increase the proportion of metaphase II oocytes, but enhanced development to blastocyst stage by day 7 (P < 0.01) after parthenogenetic activation (PA), accompanied by increased cell number. However there was no effect on the number of apoptotic cells in blastocysts. Following maturation in the presence of leptin, there were more oocytes with normal spindle formation. MAPK activity decreased more rapidly, and pronuclear formation was accelerated after parthenogenetic activation or ICSI of leptin-treated oocytes. These results suggested that exogeneous leptin enhanced spindle assembly and accelerated pronuclear formation following fertilization, possibly via the MAPK pathway.  相似文献   

19.
Porcine immature oocytes require protein synthesis for meiotic resumption, thus the importance of Cdc2 inhibitory phosphorylation in their meiotic arrest remains controversial. We examined the involvement of Cdc2 phosphorylation in the meiotic arrest of porcine oocytes with a special focus on Wee1B, an oocyte-specific Wee1 family member recently reported in mouse oocytes. We cloned a Wee1B homologue of pig by RT-PCR followed by 5’- and 3’-RACE. Overexpression of pigWee1B in porcine immature oocytes by the injection of pigWee1B mRNA almost completely blocked the germinal vesicle breakdown (GVBD) under the low cAMP concentration, which could not block their spontaneous meiotic resumption by itself. The MPF activation and cyclin B synthesis were inhibited in these oocytes. Conversely, downregulation of pigWee1B expression by the injection of specific antisense mRNA induced GVBD in the oocytes, the spontaneous meiotic resumption of which was blocked by the high concentration of cAMP (dbcAMP). In these oocytes, the MPF activity was elevated and cyclin B was accumulated. Downregulation of pigMyt1, another Wee1 family member, could not induce the GVBD under the same condition. The inhibition of tyrosine phosphatase by vanadate blocked the GVBD even in the pigWee1B-downregulated oocytes. These results suggest that the inhibitory phosphorylation of CDC2, which is catalyzed by pigWee1B, but not pigMyt1, is involved in the meiotic arrest of porcine oocytes, and that the inactivation of Wee1B in combination with the phosphatase activation induces the conversion of pre-MPF to the active MPF and starts the cyclin B synthesis, follwed by a further increase of MPF and meiotic resumption.  相似文献   

20.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号