首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We examined the morphological features of the mitochondria and endoplasmic reticula of chorion laeve cytotrophoblasts from term human fetal membranes, and compared them with those of syncytiotrophoblasts and cytotrophoblasts from human placental villi. Ultrastructural enzyme histochemistry of cytochrome c oxidase and glucose-6-phosphatase were used as cytochemical markers for these intracellular organelles. Chorion laeve cytotrophoblasts possessed abundant endoplasmic reticula, and small mitochondria with a few cristae, which were characteristic of villous syncytiotrophoblasts rather than villous cytotrophoblasts. As for these organellar structures, statistical analysis confirmed similarities between chorion laeve cytotrophoblasts and villous syncytiotrophoblasts, but significant differences between laeve cytotrophoblasts and villous cytotrophoblasts. Though these two cytotrophoblasts originated from one common cell in early placental development, they exhibited quite different organellar morphology during placental/chorioamniotic differentiation. Considering previous data, we concluded that chorion laeve cytotrophoblasts were metabolically active cells, similar to villous syncytiotrophoblasts, performing many functions in fetal membrane physiology.  相似文献   

2.
Human placental extracts contain a herapin-inhibitable lectin activity. The lectin, which closely resembles those from chicken and rat tissues, was purified by heparin-affinity chromatography. It shares many properties with the previously reported lectins, including hapten specificity, molecular weight of monomers, and immunological cross-reactivity. Sections from different stages of placental development, stained by immunohistochemistry procedures using lectin-specific antibody, showed that the lectin was initially present only in cytotrophoblasts of early first trimester villi. Later in the first trimester, both cytotrophoblasts and syncytiotrophoblasts were stained positively for lectin. From second trimester to term, the lectin was seen only in syncytiotrophoblasts.  相似文献   

3.
胎盘X细胞为一种绒毛外滋养层细胞,作者对25例晚期妊娠胎盘中X细胞进行了Keratin、EMA、HCG、HPL、PLAP、Prolactin等免疫组织化学研究,其中Keratin、EMA、HPL、PLAP等染色均示部分细胞呈阳性反应。上述结果表明X细胞介于合体滋养细胞与细胞滋养细胞之间,符合中间滋养细胞的光镜及免疫组织化学特征,而与蜕膜细胞完全不同。  相似文献   

4.
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.  相似文献   

5.
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.  相似文献   

6.
Preeclampsia (PE), Hemolysis Elevated Liver Enzymes and Low Platelets (HELLP)-syndrome, and intrauterine growth restriction (IUGR) are associated with abnormal placentation. In early pregnancy, placental cytotrophoblasts fuse and form multinuclear syncytiotrophoblasts. The envelope gene of the human endogenous retrovirus-W, Syncytin, is a key factor for mediating cell-cell fusion of cytotrophoblasts. This study investigated clinical parameters of PE and HELLP-associated IUGR and analyzed the cell-cell fusion index and beta-human chorionic gonadotropin (beta-hCG) secretion of cytotrophoblasts isolated and cultured from placentas of these patients. In addition, we performed absolute quantitation of Syncytin and determined the apoptosis rate in both cultured cytotrophoblasts and placental tissues. Cultured cytotrophoblasts from PE and HELLP-associated IUGR correlated with a pronounced lower cell-cell fusion index, 1.8- and 3.6-fold; less nuclei per syncytiotrophoblast, 1.4- and 2.0-fold; a significantly decreased beta-hCG secretion, 4.3- and 17.2-fold and a reduction of Syncytin gene expression, 8.1 (P = 0.019) and 222.7-fold (P = 0.011) compared with controls, respectively. In contrast, a significantly 2.3-fold higher apoptosis rate was observed in cultured PE/IUGR cytotrophoblasts (P = 0.043). Importantly, Syncytin gene expression in primary placental tissues of PE/IUGR was 5.4-fold lower (P = 0.047) and in HELLP/IUGR 10.6-fold lower (P = 0.019) along with a 1.8- and 1.9-fold significant increase in the apoptosis rate compared with controls, respectively. Low Syncytin expression in both cultured cytotrophoblasts and primary tissues from pathological placentas supports an intrinsic placenta-specific deregulation of cell-cell fusion in the formation of syncytiotrophoblasts leading to increased apoptosis. These processes could contribute to the development and severity of PE and HELLP-associated IUGR.  相似文献   

7.
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.  相似文献   

8.
This study compared the ultrastructural differences of term placentae from human pregnancies resulting from assisted reproductive technology (ART) with term placentae from spontaneous human pregnancies. Term placentae were taken from women who had undergone an ART procedure (n = 8) and matched with term placentae from women who had had a spontaneous pregnancy (controls, n = 15). Using light microscopy (LM) and transmission-electron microscopy (TEM), terminal villi were evaluated with respect to the placental blood barrier, fetal capillaries, villous stroma, as well as cytotrophoblasts and syncytiotrophoblasts (ST) along with their substructures. No obvious differences were found between the ART-derived and control placentae when LM was used. With TEM, however, differences in the ultrastructural features were seen in the ART-derived placentae, specifically degenerative alterations of the terminal villi, mainly in ST, including a thicker placental barrier, decreased apical microvilli, and increased multiple vacuoles. The results demonstrate that some ultrastructural differences exist between ART-derived and control placentae with respect to the placental blood barrier, which may suggest maternofetal traffic downregulation following ART treatment. Further studies are required to understand the ultrastructural changes and their potential functional aspects in ART pregnancies.  相似文献   

9.
Due to the key role of the human chorionic gonadotropin hormone (hCG) in placental development, the aim of this study was to characterize the human trophoblastic luteinizing hormone/chorionic gonadotropin receptor (LH/CG-R) and to investigate its expression using the in vitro model of human cytotrophoblast differentiation into syncytiotrophoblast. We confirmed by in situ immunochemistry and in cultured cells, that LH/CG-R is expressed in both villous cytotrophoblasts and syncytiotrophoblasts. However, LH/CG-R expression decreased during trophoblast fusion and differentiation, while the expression of hCG and hPL (specific markers of syncytiotrophoblast formation) increased. A decrease in LH/CG-R mRNA during trophoblast differentiation was observed by means of semi-quantitative RT-PCR with two sets of primers. A corresponding decrease ( approximately 60%) in LH/CG-R protein content was shown by Western-blot and immunoprecipitation experiments. The amount of the mature form of LH/CG-R, detected as a 90-kDa band specifically binding (125)I-hCG, was lower in syncytiotrophoblasts than in cytotrophoblasts. This was confirmed by Scatchard analysis of binding data on cultured cells. Maximum binding at the cell surface decreased from 3,511 to about 929 molecules/seeded cells with a kDa of 0.4-0.5 nM. Moreover, on stimulation by recombinant hCG, the syncytiotrophoblast produced less cyclic AMP than cytotrophoblasts, indicating that LH/CG-R expression is regulated during human villous trophoblast differentiation.  相似文献   

10.
Phosphatidylinositol anchors human placental-type alkaline phosphatase (PLAP) to both syncytiotrophoblast and tumour cell plasma membranes. PLAP activity was released from isolated human placental syncytiotrophoblast plasma membranes and the surface of tumour cells with a phospholipase C from Bacillus cereus. This was a specific event, not the result of proteolysis or membrane perturbation, but the action of a phosphatidylinositol-specific phospholipase C in the preparation. Soluble PLAP, released with B. cereus phospholipase C and purified by immunoaffinity chromatography, ran on SDS-PAGE as a 66-kDa band. This corresponded to intact PLAP molecules. The protease bromelain cleaved lower-molecular-mass PLAP (64 kDa) from the membranes. Flow cytometry demonstrated that B. cereus phospholipase C released human tumour cell membrane PLAP in preference to other cell-surface molecules. This was in contrast to the non-specific proteolytic action of bromelain or Clostridium perfringens phospholipase C, which had no effect on membrane PLAP expression. Radiolabelling of tumour cells with fatty acids indicated PLAP to be labelled with both [3H]myristic and [3H]palmitic acid. This fatty-acid--PLAP bond was sensitive to pH 10 hydroxylamine treatment indicating an O-ester linkage.  相似文献   

11.
Membrane protein - microvilli - lipid raft - GPI-anchored protein - epithelial cell The 31 kDa integral membrane protein stomatin (protein 7.2b) has a monotopic structure and a cytofacial orientation. We have shown previously that stomatin is located in plasma membrane protruding structures and forms high-order homo-oligomers in the human epithelial cell line UAC, suggesting that this protein has a structural function in the cortical morphogenesis of the cells. It is also present in a pool of juxtanuclear vesicles. In this study, we show that stomatin colocalizes with the GPI-anchored proteins placental alkaline phosphatase (PLAP) and membrane folate receptor alpha (MFRalpha) endogenously expressed in UAC cells. This observation enabled us to demonstrate two different aspects of stomatin. First, using anti-PLAP antibody internalization, we show that the peri-centrosomal vesicles containing stomatin correspond to a subset of endosomes, which can also be labeled with the late endosomal/lysosomal marker LAMP-2. Secondly, we found that stomatin is partially present in detergent-insoluble membrane domains and co-patches with PLAP on the plasma membrane, after cross-linking of PLAP by antibodies. These data indicate that stomatin and GPI-anchored proteins are linked through lipid rafts and undergo the same sorting events. We propose that stomatin, through its affinity for lipid rafts, functions in concentrating GPI-anchored proteins in membrane microvillar structures. Consistent with this hypothesis, we found that stomatin is expressed exclusively in microvilli of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells.  相似文献   

12.
13.
14.
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929-942), only small ( approximately 100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly ( approximately 10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits.Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins.  相似文献   

15.
The mechanisms by which the placenta adapts to exogenous stimuli to create a stable and healthy environment for the growing fetus are not well known. Low oxygen tension influences placental function, and is associated with preeclampsia, a condition displaying altered development of placental trophoblast. We hypothesized that oxygen tension affects villous trophoblast by modulation of gene expression through DNA methylation. We used the Infinium HumanMethylation450 BeadChip array to compare the DNA methylation profile of primary cultures of human cytotrophoblasts and syncytiotrophoblasts under < 1%, 8% and 20% oxygen levels. We found no effect of oxygen tension on average DNA methylation for either cell phenotype, but a set of loci became hypermethylated in cytotrophoblasts exposed for 24 h to < 1% oxygen, as compared with those exposed to 8% or 20% oxygen. Hypermethylation with low oxygen tension was independently confirmed by bisulfite-pyrosequencing in a subset of functionally relevant genes including CD59, CFB, GRAM3 and ZNF217. Intriguingly, 70 out of the 147 CpGs that became hypermethylated in < 1% oxygen overlapped with CpG sites that became hypomethylated upon differentiation of cytotrophoblasts into syncytiotrophoblasts. Furthermore, the preponderance of altered sites was located at AP-1 binding sites. We suggest that AP-1 expression is triggered by hypoxia and interacts with DNA methyltransferases (DNMTs) to target methylation at specific sites in the genome, thus causing suppression of the associated genes that are responsible for differentiation of villous cytotrophoblast to syncytiotrophoblast.  相似文献   

16.
Cytomegalovirus (CMV), the major viral cause of congenital disease, infects the uterus and developing placenta and spreads to the fetus throughout gestation. Virus replicates in invasive cytotrophoblasts in the decidua, and maternal immunoglobulin G (IgG)-CMV virion complexes, which are transcytosed by the neonatal Fc receptor across syncytiotrophoblasts, infect underlying cytotrophoblasts in chorionic villi. Immunity is central to protection of the placenta-fetal unit: infection can occur when IgG has a low neutralizing titer. Here we used immunohistochemical and function-blocking methods to correlate infection in the placenta with expression of potential CMV receptors in situ and in vitro. In placental villi, syncytiotrophoblasts express the virion receptor epidermal growth factor receptor (EGFR) but lack integrin coreceptors, and virion uptake occurs without replication. Focal infection can occur when transcytosed virions reach EGFR-expressing cytotrophoblasts that selectively initiate expression of alphaV integrin. In cell columns, proximal cytotrophoblasts lack receptors and distal cells express integrins alpha1beta1 and alphaVbeta3, enabling virion attachment. In the decidua, invasive cytotrophoblasts expressing coreceptors upregulate EGFR, thereby dramatically increasing susceptibility to infection. Our findings indicate that virion interactions with cytotrophoblasts expressing receptors in the placenta (i) change as the cells differentiate and (ii) correlate with spatially distinct sites of CMV replication in maternal and fetal compartments.  相似文献   

17.
Steroid sulfatase (STS, EC 3.1.6.2) catalyzes the hydrolysis of the sulfate ester bonds of a variety of sulfated steroids, such as cholesterol, dehydroepiandrosterone, and estrone sulfate, a reaction influencing fertility and breast cancer in mammals. The activity of the enzyme is substantially elevated in placental syncytiotrophoblasts and is lower in other somatic cells. The polypeptide sequence of the enzyme is encoded by a gene located on the distal short arm of the human X chromosome. Prior studies have shown that the STS gene escapes X-chromosome inactivation. We studied the expression of the STS gene in primary cultures of cytotrophoblasts from human term placentae and compared it with the expression of autosomally encoded placental alkaline phosphatase (PALP) and X-linked glucose-6-phosphate dehydrogenase (G6PD). During 90 h in culture, the mononucleated cytotrophoblast cells did not proliferate, but differentiated into multinucleated, syncytiotrophoblast-like cells. STS activity in freshly isolated cytotrophoblasts was low (about 17%), compared to placental tis- sue, and about 1.7-fold higher in female than in male cells. During cultivation, STS activity increased 2- to 3-fold in female, but not in male, cells. PALP activity was very low in freshly isolated cytotrophoblasts (about 5% of placental tissue), and no significant difference between female and male cells was detectable. Within 90 h in culture, PALP activity increased in all preparations about 2- to 4-fold. G6PD activity in freshly isolated cytotrophoblasts showed great variation among preparations, and no significant difference between female and male cells was detectable. In both male and female cells the activity declined to about 50% of initial activity during cultivation. We conclude that human cytotrophoblasts in primary culture show a sex-specific regulation of STS activity, perhaps as a unique feature of the STS gene. The cytotrophoblast system may offer a new possibility to study the regulation of STS gene expression.  相似文献   

18.
We investigated the subcellular localization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity, a histo- and cyto-chemical marker of nitric oxide synthase, in human placental trophoblast obtained from women with normal term pregnancies. Tetrazolium salt BSPT was used as the capturing agent. Precipitates of BSPT-formazan indicative of NADPH-d reaction were observed on the membranes of endoplasmic reticulum and nuclear envelope of syncytiotrophoblasts. Our results indicate these two intracytoplasmic organellae are the sites of nitric oxide generation in the syncytiotrophoblasts of normal term human placenta.  相似文献   

19.
Trophoblasts, the fetal cells that line the villous placenta and separate maternal blood from fetal tissue, express both Fas antigen and the tumor necrosis factor (TNF) receptor p55 (TNFRp55), two members of the TNF receptor family that contain a cytoplasmic "death domain" that mediates apoptotic signals. We show that Fas mRNA expressed by cultured villous cytotrophoblasts isolated from term placentas encodes transmembrane sequences and that the protein is full-length (approximately 45 kDa), suggesting that the product is an active plasma membrane-anchored receptor. Its location on the cell surface was confirmed by cellular ELISA analysis of live cells. Although cytotrophoblast apoptosis was induced by TNFalpha, and both anti-Fas antibody (CH11) and FasL-expressing T lymphocyte hybridoma (activated A1.1) cells induced HeLa cell apoptosis, neither CH11 antibody nor activated A1.1 cells stimulated apoptosis in term or first-trimester cytotrophoblasts or in term syncytiotrophoblasts. We conclude that Fas- but not TNFRp55-mediated apoptosis is blocked in primary villous trophoblasts. These data suggest that the Fas response is specifically inactivated by unknown mechanisms to avoid autocrine or paracrine killing by Fas ligand constitutively expressed on neighboring cyto- or syncytiotrophoblasts.  相似文献   

20.
Fibulin-5 is a secreted extracellular matrix glycoprotein and displays a diverse panel of biological functions, which can be segregated into elastogenic as well as extra-elastogenic functions. While elastogenic functions of fibulin-5 include essential roles in early steps of elastic fibre assembly, extra-elastogenic functions are widespread. Depending on the cell type used, fibulin-5 mediates cell adherence via a subset of integrins, antagonizes angiogenesis and inhibits migration as well as proliferation of endothelial and smooth muscle cells. In this study, we focused on the spatiotemporal expression of fibulin-5 in the human placenta. With progressing gestation, placental fibulin-5 expression increased from first trimester towards term. At term, placental fibulin-5 mRNA expression is lower when compared with other well-vascularized organs such as lung, kidney, heart, uterus and testis. In first trimester, placenta immunohistochemistry localized fibulin-5 in villous cytotrophoblasts and extravillous cytotrophoblasts of the proximal cell column. In term placenta, fibulin-5 was detected in the endothelial basement membrane and adventitia-like regions of vessels in the chorionic plate and stem villi. Cell culture experiments with the villous trophoblast-derived cell line BeWo showed that fibulin-5 expression was downregulated during functional differentiation and intercellular fusion. Moreover, cultivation of BeWo cells under low oxygen conditions impaired intercellular fusion and upregulated fibulin-5 expression. The spatiotemporal shift from the trophoblast compartment in first trimester to the villous vasculature at term suggests a dual role of fibulin-5 in human placental development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号