首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have examined the role of germline-specific chromosomal determinants of development in the mouse. Studies were carried out using aggregation chimaeras between androgenetic----fertilized embryos and compared with similar parthenogenetic----fertilized chimaeras. Several adult chimaeras were found with parthenogenetic cells but none were found with androgenetic cells. Analysis of chimaeras at mid-gestation showed that parthenogenetic cells were detected in the embryo and yolk sac but that androgenetic cells were found only in the trophoblast and yolk sac and not in the embryo. The contribution of parthenogenetic cells to the embryo and yolk sac was increased by aggregating 2-cell parthenogenetic and 4-cell fertilized embryos but the contribution of parthenogenetic cells in extraembryonic tissues remained negligible even after aggregation of 4-cell parthenogenetic and 2-cell fertilized embryos. Furthermore, parthenogenetic cells were primarily found in the yolk sac mesoderm and not in the yolk sac endoderm. These results suggest that maternal chromosomes in parthenogenetic cells permit their participation in the primitive ectoderm lineage but these cells are presumably eliminated by selective pressure or autonomous cell lethality from the primitive endoderm and trophectoderm lineages. Conversely paternal chromosomes in androgenetic cells confer opposite properties since the embryonic cells can be detected in the trophoblast and the yolk sac but not in the embryos, presumably because they are eliminated from the primitive ectoderm lineage. The spatial distribution of cells with different parental chromosomes may occur partly because of differential expression of some genes, such as proto-oncogenes, and partly due to their ability to respond to a variety of diffusible growth factors.  相似文献   

2.
Syndecan is an integral membrane proteoglycan that behaves as a matrix receptor by binding cells to interstitial matrix and associating intracellularly with the actin cytoskeleton. Using immunohistology, we have now localized this proteoglycan during the morphogenesis of various derivatives of the surface ectoderm in mouse embryos. Syndecan is expressed on ectodermal epithelia, but is selectively lost from the cells that differentiate into the localized placodes that initiate lens, nasal, otic and vibrissal development. The loss is transient on presumptive ear, nasal and vibrissal epithelia; the derivatives of the differentiating ectodermal cells that have lost syndecan subsequently re-express syndecan. In contrast, syndecan is initially absent from the mesenchyme underlying the surface ectoderm, and is transiently expressed when the surface ectoderm loses syndecan. These results demonstrate that expression of syndecan is developmentally regulated in a distinct spatiotemporal pattern. On epithelia, syndecan is lost at a time and, location that correlates with epithelial cell differentiation and, on mesenchyme, syndecan is acquired when the cells aggregate in proximity to the epithelium. This pattern of change with morphogenetic events is unique and not duplicated by other matrix molecules or adhesion receptors.  相似文献   

3.
Afadin is an actin filament-binding protein that binds to nectin, an immunoglobulin-like cell adhesion molecule, and is colocalized with nectin at cadherin-based cell-cell adherens junctions (AJs). To explore the function of afadin in cell-cell adhesion during embryogenesis, we generated afadin(-/-) mice and embryonic stem cells. In wild-type mice at embryonic days 6.5-8.5, afadin was highly expressed in the embryonic ectoderm and the mesoderm, but hardly detected in the extraembryonic regions such as the visceral endoderm. Afadin(-/-) mice showed developmental defects at stages during and after gastrulation, including disorganization of the ectoderm, impaired migration of the mesoderm, and loss of somites and other structures derived from both the ectoderm and the mesoderm. Cystic embryoid bodies derived from afadin(-/-) embryonic stem cells showed normal organization of the endoderm but disorganization of the ectoderm. Cell-cell AJs and tight junctions were improperly organized in the ectoderm of afadin(-/-) mice and embryoid bodies. These results indicate that afadin is highly expressed in the ectoderm- derived cells during embryogenesis and plays a key role in proper organization of AJs and tight junctions of the highly expressing cells, which is essential for proper tissue morphogenesis.  相似文献   

4.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

5.
Syndecan, a cell surface proteoglycan, binds multiple extracellular ligands, and is developmentally regulated in epithelial and mesenchymal tissues. The branching morphogenesis of embryonic lung is dependent on epithelial-mesenchymal interactions and, based on studies with inhibitors, on proteoglycan synthesis. To assess the role of syndecan in lung development, we examined the structure and distribution of syndecan in Day 12 to 18 embryonic mouse lungs using monoclonal antibody 281-2 for histology, immunopurification, and Western blots. At Day 12, syndecan localizes mainly on epithelial cell surfaces, but also stains mesenchymal cells near the epithelium. By Day 14, syndecan is expressed predominantly on epithelia and by Day 18, syndecan remains on airway epithelia but is absent from the alveolar pneumocytes. This change in expression correlates with a change in syndecan structure; the relative mass of syndecan gradually falls from Day 12 to Day 18 without a change in relative mass of the core protein. The difference is due to a developmental reduction in the size of the glycosaminoglycan chains; heparan sulfate chains on syndecan from Day 14 lungs were nearly twofold larger than those from Day 18 lungs. Newly synthesized syndecan in the lungs had the same relative mass as total syndecan, indicating that the change in mass is due to a developmental change in the nature of the syndecan synthesized. The alteration in syndecan structure could alter the function of this proteoglycan during lung development.  相似文献   

6.
Promotion of cell growth and differentiation by growth factors during early development and organ formation are both temporally and spatially very precise. Syndecan is a well characterized integral membrane proteoglycan that binds several extracellular matrix components via its heparan sulfate chains and is therefore suggested to participate in cell regulation. Syndecan-like molecules, as low affinity receptors for heparin-binding growth factors, have been recently suggested to also regulate growth factor activity. Heparin/heparan sulfate interaction is required before, e.g. basic fibroblast growth factor (bFGF) can associate with its high affinity cell surface receptors and trigger signal transduction. In this paper we show that syndecan, but not free heparan sulfate chains, can simultaneously bind both bFGF and extracellular matrix molecules. Moreover, increased DNA synthesis of 3T3 cells was observed when the 3T3 cells were exposed to beads coated with the fibronectin-syndecan-bFGF complex, indicating that bFGF remains biologically active even when immobilized to matrix via the heparan sulfate chains of syndecan. Finally, when bFGF was bound to the surface of another cell type (epithelial), co-culture with 3T3 cells stimulated 3T3 cell growth. Therefore, we suggest that syndecan-like molecules may determine sites of growth factor action at cell-matrix and cell-cell interfaces.  相似文献   

7.
A 100,000-Da glucose-regulated surface protein (100K-GRP) has previously been isolated from the cell surface and culture medium of human fibroblasts. A rabbit antiserum directed against this protein reacts with the cell surface of both human and murine cultured cells and with a broad spectrum of mammalian tissues. It is shown, via indirect immunofluorescence, that this protein is also present on cells of the developing mouse embryo and can be detected as early as the 4-cell stage. The 8-cell embryo and morula show positive surface labeling; the inner cell masses of both the pre- and postimplantation blastocysts are also positive but the trophectoderm is not. At the 6-day egg cylinder stage, the embryonic and extra-embryonic ectoderm label intensely with the antiserum and visceral endoderm shows faint labeling. No labeling can be detected on parietal endoderm or on the trophoblastic giant cells invading the uterine decidua. However, the internal cells of the ectoplacental cone exhibit bright fluorescence. The same pattern is observed on 7- to 8.5-day embryos, except that at this stage no label is associated with the visceral endoderm. In addition, mesodermal cells emerging from the primitive streak are also labeled.  相似文献   

8.
In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture.  相似文献   

9.
Anteroposterior (AP) polarity in the mammalian embryo is specified during gastrulation when naive progenitor cells in the primitive ectoderm are recruited into the primitive streak to form mesoderm and endoderm. At the opposite pole, this process is inhibited by signals previously induced in distal visceral endoderm (DVE). Both DVE and primitive streak formation, and hence positioning of the AP axis, rely on the TGFbeta family member Nodal and its proprotein convertases Furin and Pace4. Here, we show that Nodal and Furin are initially co-expressed in the primitive endoderm together with a subset of DVE markers such as Lefty1 and Hex. However, with the appearance of extra-embryonic ectoderm (ExE), DVE formation is transiently inhibited. During this stage, Nodal activity is essential to specify embryonic VE and restrict the expression of Furin to the extra-embryonic region. Activation of Nodal is also necessary to maintain determinants of pluripotency such as Oct4, Nanog and Foxd3 during implantation, and to stimulate elongation of the egg cylinder, before inducing DVE and germ layer formation. We conclude that Nodal is already activated in primitive endoderm, but induces a functional DVE only after promoting the expansion of embryonic VE and pluripotent progenitor cells in the epiblast.  相似文献   

10.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

11.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

12.
The regionalisation of cell fate in the embryonic ectoderm was studied by analyzing the distribution of graft-derived cells in the chimaeric embryo following grafting of wheat germ agglutinin--gold-labelled cells and culturing primitive-streak-stage mouse embryos. Embryonic ectoderm in the anterior region of the egg cylinder contributes to the neuroectoderm of the prosencephalon and mesencephalon. Cells in the distal lateral region give rise to the neuroectoderm of the rhombencephalon and the spinal cord. Embryonic ectoderm at the archenteron and adjacent to the middle region of the primitive streak contributes to the neuroepithelium of the spinal cord. The proximal-lateral ectoderm and the ectodermal cells adjacent to the posterior region of the primitive streak produce the surface ectoderm, the epidermal placodes and the cranial neural crest cells. Some labelled cells grafted to the anterior midline are found in the oral ectodermal lining, whereas cells from the archenteron are found in the notochord. With respect to mesodermal tissues, ectoderm at the archenteron and the distal-lateral region of the egg cylinder gives rise to rhombencephalic somitomeres, and the embryonic ectoderm adjacent to the primitive streak contributes to the somitic mesoderm and the lateral mesoderm. Based upon results of this and other grafting studies, a map of prospective ectodermal tissues in the embryonic ectoderm of the full-streak-stage mouse embryo is constructed.  相似文献   

13.
The expression of the cell surface-associated glycoprotein fibronectin was studied by indirect immunofluorescence in the early stages of mouse embryogenesis. Fibronectin was not detectable in early preimplantation embryos. Trace amounts of the protein were first found between the cells of the inner cell mass of late blastocysts. In implanted early egg cylinders, fibronectin was deposited between the ectoderm and endoderm of the inner cell mass and in the nascent Reichert's membrane. With development, the visceral and the parietal endoderm cells became positive for the protein, but no fibronectin was detected in ectoderm cells. During segregation of mesoderm from ectoderm, fibronectin appeared in mesoderm cells and as a band between the two germ layers. In the developing amnion and chorion, the protein was localized between the ectodermal and mesodermal cell layers. The results indicate that fibronectin is an early differentiation market for the stage of endoderm formation in the inner cell mass of the mouse blastocyst. It is also a marker of mesoderm appearance and seems to be associated with the accumulating extracellular matrix material in the developing embryo.  相似文献   

14.
We examined the activity of X-linked glucose-6-phosphate dehydrogenase (G6PD) in concepti of the enzyme-deficient mutant and wild-type C3H mice. By using different crosses between the G6PD-deficient homozygous, heterozygous, or wild-type females and hemizygous or wild-type males, we confirmed the inactivation of one of the two X chromosomes in female concepti by a histochemical method. With this technique, a dual (G6PD + or -) cell population could be observed in the tissue sections. We demonstrate that the paternal X chromosome is inactivated in the endoderm of parietal and visceral yolk sac and in the trophoblast, whereas in the embryo and in the yolk sac mesoderm this inactivation is random. Our results confirm biochemical observations showing that only the maternal X chromosome is expressed in all derivatives of trophectoderm and primitive endoderm, whereas derivatives of the primitive ectoderm show random X chromosome expression.  相似文献   

15.
16.
小鼠胚胎干细胞分化形成拟胚体过程中的细胞程序性死亡   总被引:1,自引:0,他引:1  
为了检测小鼠胚胎干细胞 (embryonicstemcell ,ES细胞 )体外分化的拟胚体 (embryoidbodies ,EBs)形成过程中细胞程序性死亡 (programmedcelldeath ,PCD)的发生 ,通过悬滴、悬浮培养技术定向诱导未分化的ES细胞分化为拟胚体 ,并用RT PCR检测原始内胚层、原始外胚层、中胚层、内脏内胚层 4种分子标记物在EBs中的表达 .通过TUNEL染色、电镜、激光共聚焦显微镜及Western印迹以确定凋亡发生 .结果表明 :ES细胞体外分化为拟胚体并且表达各胚层相应的分子标记物 ;在拟胚体的发育过程中出现明显的空腔化过程 ,TUNEL染色及电镜观察到凋亡生成 ,同时线粒体膜电位 (ΔΨm)在拟胚体发育过程中降低 ,通过Western印迹检测到caspase3、caspase8的激活 .表明小鼠ES细胞所分化的拟胚体可以作为研究早期胚胎发育的实验模型 ,线粒体在拟胚体的细胞程序性死亡过程中发挥重要的作用 .为进一步利用拟胚体研究细胞程序性死亡及相关信号分子在小鼠胚胎发育早期的作用奠定了基础  相似文献   

17.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The structure of the cells forming the primitive streak was examined by SEM in a series of embryos at Hamburger and Hamilton's stages 2–5. Specimens were prepared by stripping the endoderm from fresh embryos in New Culture and by fracturing whole fixed embryos along and at right angles to the primitive streak. At all stages of examination the SEM appearance of cells within the primitive streak was quite different from that of ectodermal, endodermal or mesodermal cells away from the streak. Streak cells were closely packed, lay with their long axes directed from ectoderm to endoderm and possessed many flat leaf-like processes. By contrast the ectoderm formed a columnar epithelium, the endoderm a flat epithelium and the mesoderm was a layer of loosely arranged cells with long, thin processes.
Within the streak SEM did not show any differences between cells that could identify them specifically as future endoderm or mesoderm cells. It was concluded that during gastrulation all the cells migrating through the primitive streak have the same appearance regardless of their eventual destination in the embryo. This structure may be attributable to the type of movement made by cells during invagination.  相似文献   

19.
20.
Experimental studies and field surveys suggest that embryonic loss during the first 6 weeks of gestation is a common occurrence in the mare. During the first 2 weeks of development, a number of important cell differentiation events must occur to yield a viable embryo proper containing all three major germ layers (ectoderm, mesoderm, and endoderm). Because formation of the mesoderm and primitive streak are critical to the development of the embryo proper, but have not been described extensively in the horse, we examined tissue development and differentiation in early horse conceptuses using a combination of stereomicroscopy, light microscopy, and immunohistochemistry. Ingression of epiblast cells to form the mesoderm was first observed on day 12 after ovulation; by Day 18 the conceptus had completed a series of differentiation events and morphologic changes that yielded an embryo proper with a functional circulation. While mesoderm precursor cells were present from Day 12 after ovulation, vimentin expression was not detectable until Day 14, suggesting that initial differentiation of mesoderm from the epiblast in the horse is independent of this intermediate filament protein, a situation that contrasts with other domestic species. Development of the other major embryonic germ layers was similar to other species. For example, ectodermal cells expressed cytokeratins, and there was a clear demarcation in staining intensity between embryonic ectoderm and trophectoderm. Hypoblast showed clear α1-fetoprotein expression from as early as Day 10 after ovulation, and seemed to be the only source of α1-fetoprotein in the early conceptus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号