首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two clonal nerve-like cell lines derived from HT22 and PC12 have been selected for resistance to glutamate toxicity and amyloid toxicity, respectively. In the following experiments it was asked if these cell lines show cross-resistance toward amyloid beta peptide (Abeta) and glutamate as well as toward a variety of additional neurotoxins. Conversely, it was determined if inhibitors of oxytosis, a well-defined oxidative stress pathway, also protect cells from the neurotoxins. It is shown that both glutamate and amyloid resistant cells are cross resistant to most of the other toxins or toxic conditions, while inhibitors of oxytosis protect from glutathione and cystine depletion and H2O2 toxicity, but not from the toxic effects of nitric oxide, rotenone, arsenite or cisplatin. It is concluded that while there is a great deal of cross-resistance to neurotoxins, the components of the cell death pathway which has been defined for oxytosis are not used by many of the neurotoxins.  相似文献   

2.
The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.  相似文献   

3.
Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death ) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways.  相似文献   

4.
Flavonoids are a family of antioxidants found in fruits and vegetables as well as in popular beverages such as red wine and tea. Although the physiological benefits of flavonoids have been largely attributed to their antioxidant properties in plasma, flavonoids may also protect cells from various insults. Nerve cell death from oxidative stress has been implicated in a variety of pathologies, including stroke, trauma, and diseases such as Alzheimer's and Parkinson's. To determine the potential protective mechanisms of flavonoids in cell death, the mouse hippocampal cell line HT-22, a model system for oxidative stress, was used. In this system, exogenous glutamate inhibits cystine uptake and depletes intracellular glutathione (GSH), leading to the accumulation of reactive oxygen species (ROS) and an increase in Ca(2+) influx, which ultimately causes neuronal death. Many, but not all, flavonoids protect HT-22 cells and rat primary neurons from glutamate toxicity as well as from five other oxidative injuries. Three structural requirements of flavonoids for protection from glutamate are the hydroxylated C3, an unsaturated C ring, and hydrophobicity. We also found three distinct mechanisms of protection. These include increasing intracellular GSH, directly lowering levels of ROS, and preventing the influx of Ca(2+) despite high levels of ROS. These data show that the mechanism of protection from oxidative insults by flavonoids is highly specific for each compound.  相似文献   

5.
This study is to examine if Cu(2+) can act directly on mitochondria or indirectly by producing reactive oxygen species (ROS), isolated broiler hepatic mitochondria were exposed to different concentrations of Cu(2+) (10, 30, 50?μM). Respiratory chain complex activities, ROS generation, respiratory control ratio (RCR) and mitochondrial membrane potential were investigated. Dose-dependent inhibition of respiratory chain complexes and induction of ROS were observed, which coincided with decreasing RCR both with glutamate?+?malate or succinate. Further investigation indicated that the membrane potential determined by rhodamine 123 release decreased after CuCl(2) exposure at 30 and 50?μM. In addition, the effects of the antioxidants NAC (200?μM) and GSH (200?μM) were studied at 50?μM Cu(2+). The results indicate that Cu can induce mitochondrial dysfunction in excessive dose and the effect of Cu(2+) exposure on respiratory chain is not site-specific, and antioxidants can protect the mitochondrial function by reducing the formation of free radicals.  相似文献   

6.
It has been reported that beta amyloid induces production of radical oxygen species and oxidative stress in neuronal cells, which in turn upregulates β-secretase (BACE-1) expression and beta amyloid levels, thereby propagating oxidative stress and increasing neuronal injury. A series of resveratrol derivatives, known to be inhibitors of oxidative stress-induced neuronal cell death (oxytosis) were biologically evaluated against BACE-1 using homogeneous time-resolved fluorescence (TRF) assay. Correlation between oxytosis inhibitory and BACE-1 inhibitory activity of resveratrol derivatives was statistically significant, supporting the notion that BACE-1 may act as pivotal mediator of neuronal cell oxytosis. Four of the biologically evaluated resveratrol analogs demonstrated considerably higher activity than resveratrol in either assay. The discovery of some “hits” led us to initiate detailed docking studies associated with Molecular Dynamics in order to provide a plausible explanation for the experimental results and understand their molecular basis of action.  相似文献   

7.
8.
Mycobacterium ulcerans produces a macrolide exotoxin, mycolactone which suppresses immune cells activity, is toxic to most cells and the key virulence factor in the pathogenesis of Buruli ulcer disease. Mycolactone is reported to mediate the production of reactive oxygen species in keratinocytes; cells that play critical role in wound healing. Increased levels of reactive oxygen species have been shown to disrupt the well-ordered process of wound repair; hence, the function of wound-healing cells such as macrophages, keratinocytes, and fibroblast could be impaired in the presence of the reactive oxygen species mediator, mycolactone. To ensure regeneration of tissues in chronic ulcers, with proper and timely healing of the wounds, natural antioxidants that can combat the effects of induced reactive oxygen species in wound-healing cells ought to be investigated. Reactive oxygen species activity was determined in mycolactone-treated RAW 264.7 macrophages and the scavenging ability of the antioxidants (ascorbic acid, gallic acid, and green tea kombucha) against mycolactone-induced reactive oxygen species (superoxide anions) was assessed using fluorescein probe (DCF-DA) and nitroblue tetrazolium dye. Cytotoxicity of the antioxidants, mycolactone, and the protective effect of the antioxidants on the cells upon treatment with mycolactone were determined using the Alamar blue assay. The expression levels of endogenous antioxidant enzyme genes (superoxide dismutase, catalase, and glutathione peroxidase) in response to mycolactone-mediated reactive oxygen species were determined using RT-qPCR. Mycolactone induced the production of reactive oxygen species in RAW 264.7 macrophages, and the resulting superoxide anions were scavenged by some of the antioxidants. The selected endogenous antioxidant enzyme genes in the macrophages were upregulated in the presence of the antioxidants and mycolactone. The exogenously supplied ascorbic acid and green tea kombucha offered moderate protection to the macrophages against the toxicity of mycolactone. We conclude that the results provide insights into alternate and adjunct therapeutic approaches in Buruli ulcer treatment, which could significantly attenuate the toxicity of the pathogenic factor; mycolactone.  相似文献   

9.
10.
Hydroquinone, a potent toxic agent of cigarette smoke, damages retinal pigmented epithelial cells by triggering oxidative stress and mitochondrial dysfunction, two events causally related to the development and progression of retinal diseases. The inner mitochondrial membrane is enriched in cardiolipin, a phospholipid susceptible of oxidative modifications which determine cell-fate decision. Using ARPE-19 cell line as a model of retinal pigmented epithelium, we analyzed the potential involvement of cardiolipin in hydroquinone toxicity. Hydroquinone exposure caused an early concentration-dependent increase in mitochondrial reactive oxygen species, decrease in mitochondrial membrane potential, and rise in the rate of oxygen consumption not accompanied by changes in ATP levels. Despite mitochondrial impairment, cell viability was preserved. Hydroquinone induced cardiolipin translocation to the outer mitochondrial membrane, and an increase in the colocalization of the autophagosome adapter protein LC3 with mitochondria, indicating the induction of protective mitophagy. A prolonged hydroquinone treatment induced pyroptotic cell death by cardiolipin-mediated caspase-1 and gasdermin-D activation. Cardiolipin-specific antioxidants counteracted hydroquinone effects pointing out that cardiolipin can act as a mitochondrial “eat-me signal” or as a pyroptotic cell death trigger. Our results indicate that cardiolipin may act as a timer for the mitophagy to pyroptosis switch and propose cardiolipin-targeting compounds as promising approaches for the treatment of oxidative stress-related retinal diseases.  相似文献   

11.
Recent evidence has been provided for astrocyte degeneration in experimental models of neurodegenerative insults associated with glutamate transport alteration. To determine whether astrocyte death can directly result from altered glutamate transport, we here investigated the effects of L-trans-pyrrolidine-2,4-dicarboxylate (PDC) on undifferentiated or differentiated cultured rat striatal astrocytes. PDC induced death of differentiated astrocytes without affecting undifferentiated astrocyte viability. Death of differentiated astrocytes was also triggered by another substrate inhibitor but not by blockers of glutamate transporters. The PDC-induced death was delayed and apoptotic, and death rate was dose and treatment duration-dependent. Although preceded by extracellular glutamate increase, this death was not mediated through glutamate receptor stimulation, as antagonists did not provide protection. It involves oxidative stress, as a decrease in glutathione contents and a dramatic raise in reactive oxygen species preceded cell loss, and as protection was provided by antioxidants. PDC induced a similar percentage of GSH depletion in the undifferentiated astrocytes, but only a slight increase in reactive oxygen species. Interestingly, undifferentiated astrocytes exhibited twofold higher basal GSH content compared with the differentiated ones, and depleting their GSH content was found to render them susceptible to PDC. Altogether, these data demonstrate that basal GSH content is a critical factor of astrocyte vulnerability to glutamate transport alteration with possible insights onto concurrent death of astrocytes and gliosis in neurodegenerative insults.  相似文献   

12.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

13.
The recent finding that dendritic spines (on which 90% of all excitatory synapses on pyramidal cells are formed) are not permanent structures but are continually being formed and adsorbed has implications for the present theoretical basis of neurocomputation, which is largely based on the concept of fixed nerve nets. This evidence would tend to support the recent theories of Edelman, Freeman, Globus, Pribram and others that neuronal networks in the brain operate mainly as nonlinear dynamic, chaotic systems. This paper presents a hypothesis of a possible neurochemical mechanism underlying this synaptic plasticity based on reactive oxygen species and toxic 0-semiquinones derived from catecholamines (i) by the enzyme prostaglandin H synthetase induced by glutamatergic NMDA receptor activation and (ii) by reactive nitrogen species derived from nitric oxide in a low ascorbate environment. A key factor in this neuromodulation may be the fact that catecholamines are potent antioxidants and free radical scavengers and are thus able to affect the redox mediated balance at the glutamate receptors between synapse formation and synapse removal that may be a key factor in neurocomputational plasticity. But catecholamines are also easily oxidized to neurotoxic 0-semiquinones and this may be relevant to the pathology of several diseases including schizophrenia. The relationship between dopamine release and positive reinforcement is relevant to this hypothesis.  相似文献   

14.
Behl C  Moosmann B 《Biological chemistry》2002,383(3-4):521-536
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.  相似文献   

15.
BackgroundAerobic organisms have to overcame the dangerous species derived from the unquestionable favorable effects due to the utilization of oxygen in the cellular respiration. 2,3-Diphosphoglycerate (DPG) could be one of the molecules able to perform different role inside the cells and (from the data obtained from our experimental work) may help cellular components, in particular hemoglobin, to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS).MethodsTherefore, we have investigated the kinetic and antioxidant properties of this molecule against the main biological reactive species and the protective role of this molecules on hemoglobin treated with strong oxidant.ResultsDPG, at the physiological concentration is able to scavenge hydroxyl radical, peroxyl radical, cation radicals and to chelate iron in the reduced state. Moreover it is able to avoid oxidation of iron inside the hemoglobin following treatment with nitrite and tert-butyl hydroperoxide (t-BOOH). On the other side, it is not able to protect membrane components from oxidative burning. This different behavior towards radical species is probably linked to the polarity of the molecule and also the high levels of charged groups present on the surface of DPG, that avoid the possibility to act in an environment almost completely hydrophobic, as inside the membrane, where reactive species produce the main damages during the reactions of peroxidation.ConclusionsThis is the first paper dealing with the potential role of DPG not only as a modulator of oxygen affinity in hemoglobin, but also as a scavenger of radicals.  相似文献   

16.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   

17.
Several studies have shown that pyruvate can scavenge H(2)O(2) and protect from H(2)O(2)-mediated cell injury. Mitochondria are critical participants in the control of apoptotic and necrotic cell death. Mitochondrial GSH plays an important role in the maintenance of cell functions and viability by metabolism of oxygen free radicals generated by the respiratory chain. Since loss of GSH, especially mitochondrial GSH, is associated with increased production of reactive oxygen species and cell toxicity, the ability of pyruvate to protect against these actions was evaluated. Adding pyruvate to HepG2 cells depleted of GSH by treatment with l-buthionine sulfoximine (BSO) surprisingly caused loss of viability after 24 and 48 h of incubation. Anoxia, treatment with antioxidants, and infection with cytosolic catalase, and interestingly, catalase expressed in the mitochondrial compartment were able to rescue the HepG2 cells from this pyruvate plus BSO injury, suggesting a key role for H(2)O(2), and lipid peroxides as mediators in the cytotoxicity. This toxicity and cell death observed was linked to damage to the mitochondria as evidenced by the increased lipid peroxidation in total homogenate and mitochondrial fraction, loss of mitochondrial membrane potential, and a decrease in protein-sulfhydryl groups. The type of cell death observed under these conditions was a mixture of apoptosis and necrosis. These results suggest that the protective ability of pyruvate against oxidant damage requires a functional GSH pool, especially in the mitochondrial compartment, and that in the absence of GSH, pyruvate increases cell injury by damaging the mitochondria, presumably as a consequence of enhanced electron flow and reactive oxygen production by the respiratory chain.  相似文献   

18.
Receptor agonists that initiate fluid secretion in salivary gland epithelial cells also increase protein phosphorylation. To assess contributions of tyrosine phosphorylation to secretion, changes in muscarinic receptor-initiated secretion (estimated from sodium pump-dependent increases in oxygen consumption) were measured in parotid acinar cells exposed to tyrosine kinase inhibitors. However, like the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, tyrphostins AG10 and AG18 increased the rate of oxygen consumption and reduced cellular ATP by approximately 90% in the absence of the muscarinic agonist carbachol, indicating that these tyrphostins uncouple mitochondria. Exposure of isolated mitochondria to five structurally related tyrphostins demonstrated that their relative potencies as uncouplers differed from their in vitro kinase-inhibitory potencies due to different molecular requirements for the two effects. AG10 and AG18 blocked parotid phosphorylation events only at concentrations that reduced ATP content. The tyrosine kinase inhibitor genistein reduced ATP content by 15-20% and weakly uncoupled isolated mitochondria, but its inhibition of carbachol-mediated protein kinase Cdelta tyrosine phosphorylation and ERK1/2 activation appeared attributable to blocking tyrosine kinases directly. Carbachol itself rapidly reduced ATP content by 15-20%. Carbachol, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (P2X(7) receptor agonist), AG10, AG18, and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone rapidly activated the fuel sensor AMP-activated protein kinase (AMPK); however, only AMPK activation by carbachol and BzATP was due to sodium pump stimulation. AG10 and AG18 also activated AMPK and/or uncoupled mitochondria in PC12, HeLa, and HEK293 cells. These studies demonstrate that some tyrosine kinase inhibitors produce cellular effects that are mechanistically different from their primary in vitro characterizations and, as do salivary secretory stimuli, promote rapid metabolic alterations that initiate secondary signaling events.  相似文献   

19.
The pineal hormone melatonin has neuroprotective effects in a large number of models of neurodegeneration. Melatonin crosses the blood-brain barrier, shows a decrease in its nocturnal peaks in blood with age that has been associated with the development of neurodegenerative disorders, and has been shown to be harmless at high concentrations. These properties make melatonin a potential therapeutic agent against neurodegenerative disorders but the pathways involved in such neuroprotective effects remain unknown. In the present report we study the intracellular pathways implicated in the complete neuroprotection provided by melatonin against glutamate-induced oxytosis in the HT22 mouse hippocampal cell line. Our results strongly suggest that melatonin prevents oxytosis through a direct antioxidant effect specifically targeted at the mitochondria. Firstly, none of the described transducers of melatonin signalling seems to be implicated in the neuroprotection provided by this indole. Secondly, melatonin does not prevent cytosolic GSH depletion-dependent increase in reactive oxygen species (ROS), but it totally prevents mitochondrial ROS production despite the fact that the latter is much higher than the former. And finally, there is a high correlation between the concentration at which melatonin and closely related indoles exert a direct antioxidant effect in vitro and a neuroprotective effect against glutamate-induced oxytosis.  相似文献   

20.
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号