首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lung cancer (LC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Using bioinformatics analysis and immunohistochemical of lung carcinoma tissues, we show that TRIM59 as a critical oncoprotein relating to LC proliferation and metastasis. In this study, high TRIM59 expression was significantly correlated with lymph node metastasis, distant metastasis, and tumour stage. Furthermore, up‐regulation of TRIM59 expression correlated with poorer outcomes in LC patients. Mechanistically, TRIM59 play a key role in promoting LC growth and metastasis through regulation of extracellular‐signal regulated protein kinase (ERK) signalling pathway and epithelial‐to‐mesenchymal transition (EMT)‐markers, as validated by loss‐of‐function studies. In‐depth bioinformatics analysis showed that there is preliminary evidence of co‐expression of TRIM59 and cyclin dependent kinase 6 (CDK6) in LC. Notably, CDK6 expression significantly decreased when TRIM59 was knocked down in the LC cells. In contrast, exogenous up‐regulation of TRIM59 expression also induced significant increases in the expression of CDK6. Moreover, the expression of CDK6 was also inhibited by the ERK signalling inhibitor, U0126. The results of both loss‐ and gain‐of‐function studies showed that TRIM59 could regulate the expression of CDK6. Collectively, these data provide evidence that TRIM59 is involved in lung carcinoma growth and progression possibly through the induction of CDK6 expression and EMT process by activation of ERK pathway.  相似文献   

2.
Papillary thyroid carcinoma (PTC) is the common subtype of thyroid cancer, which is a common endocrine malignancy. Tripartite motif 26 (TRIM26) has been found to act as a tumor suppressor in several cancers. However, the functional roles of TRIM26 in PTC remain unknown. In this study, we examined the TRIM26 expression in PTC and evaluated the effects of TRIM26 on proliferation, metastasis, and glycolysis in PTC cells. The results proved that TRIM26 was significantly downregulated in PTC tissues and cell lines. TRIM26 overexpression inhibited cell proliferation, migration, and invasion in PTC cells. TRIM26 overexpression also suppressed the epithelial-to-mesenchymal transition process. Besides, overexpression of TRIM26 caused significant decrease in glucose uptake and lactate production in PTC cells. Further investigations revealed that TRIM26 overexpression inhibited the activation of PI3K/Akt pathway. Treatment with an activator (740Y-P) of the PI3K/AKT pathway reversed the antitumor effects of TRIM26 on PTC cells. These findings provided evidence that TRIM26 acted as a tumor suppressor in PTC.  相似文献   

3.
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA–mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.  相似文献   

4.
Overexpression of focal adhesion kinase (FAK) has been well correlated with tumor development and/or the maintenance of tumor phenotype. In addition, inappropriate activation of the extracellular regulated kinase (ERK) signaling pathway is common to many human cancers. In the present study, we investigated the interplay between FAK and ERK in androgen-independent prostate cancer cells (PC3 and DU145 cells). We observed that suppression of FAK expression using small interfering RNA-mediated knockdown decreased the clonogenic activity, whereas overexpression of FAK increased it. We also observed that detachment of PC3 and DU145 cells from their substrate induced tyrosine phosphorylation of FAK. ERK knockdown diminished FAK protein levels and tyrosine phosphorylation of FAK as well as FAK promoter-reporter activity. We also tested the effect of MEK inhibitors and small interfering RNA-mediated knockdown of ERK1 and/or ERK2 on cell proliferation, invasiveness, and growth in soft agar of PC3 and DU145 cells. Inhibition of ERK signaling grossly impaired clonogenicity as well as invasion through Matrigel. However, inhibition of ERK signaling resulted in only a modest inhibition of 3H-thymidine incorporation and no effect on overall viability of the cells or increased sensitivity to anoikis. Taken together, these data show, for the first time, a requirement for FAK in aggressive phenotype of prostate cancer cells; reveal interdependence of FAK and ERK1/2 for clonogenic and invasive activity of androgen-independent prostate cancer cells; suggest a role for ERK regulation of FAK in substrate-dependent survival; and show for the first time, in any cell type, the regulation of FAK expression by ERK signaling pathway.  相似文献   

5.
6.
7.
Tribbles homolog 3 (TRB3) has been accounted for regulation of a few cell processes through interaction with other significant proteins. The molecular mechanisms underlying TRB3 in tumorigenesis in lung adenocarcinoma have not been entirely elucidated. The present study is aimed at determining the function and fundamental mechanisms of TRB3 in lung adenocarcinoma progression. TRB3 was highly expressed in A549 and H1299 cells and lung adenocarcinoma tissues compared with human bronchial epithelial cells (HBEpC) and adjacent normal lung tissues. Hypoxia significantly upregulated the expression of TRB3 protein in A549 and H1299 cells in a time-dependent way. Gene expression profiling interactive analysis data analysis indicated that patients with lung adenocarcinoma with excessive expression of TRB3 mRNA had fundamentally shorter survival time. TRB3 knockdown in A549 cells can inhibit cell proliferation and migration, and promote cell apoptosis. TRB3 knockdown reduced the expression of p-ERK and p-JNK, but did not affect the expression of p-P38 MAPK. TRB3 overexpression enhances the malignant transformation abilities of HBEpC such as cell proliferation, migration and colony formation, which could be reversed by U0126 and SP600125. TRB3 overexpression promotes the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but was not affected by U0126 and SP600125. The results of coimmunoprecipitation experiments indicated that TRB3 binds directly to ERK and JNK. This study suggests that TRB3 has a potentially carcinogenic role in lung adenocarcinoma by binding to ERK and JNK and promoting the phosphorylation of ERK and JNK. TRB3 can be a possible therapeutic focus for lung adenocarcinoma.  相似文献   

8.
The antidepressant and cocaine sensitive plasma membrane monoamine transporters are the primary mechanism for clearance of their respective neurotransmitters and serve a pivotal role in limiting monoamine neurotransmission. To identify molecules in pathways that regulate dopamine transporter (DAT) internalization, we used a genetic complementation screen in Xenopus oocytes to identify a mitogen-activated protein (MAP) kinase phosphatase, MKP3/Pyst1/DUSP6, as a molecule that inhibits protein kinase C-induced (PKC) internalization of transporters, resulting in enhanced DAT activity. The involvement of MKP3 in DAT internalization was verified using both overexpression and shRNA knockdown strategies in mammalian cell models including a dopaminergic cell line. Although the isolation of MKP3 implies a role for MAP kinases in DAT internalization, MAP kinase inhibitors have no effect on internalization. Moreover, PKC-dependent down-regulation of DAT does not correlate with the phosphorylation state of several well-studied MAP kinases (ERK1/2, p38, and SAPK/JNK). We also show that MKP3 does not regulate PKC-induced ubiquitylation of DAT but acts at a more downstream step to stabilize DAT at the cell surface by blocking dynamin-dependent internalization and delaying the targeting of DAT for degradation. These results indicate that MKP3 can act to enhance DAT function and identifies MKP3 as a phosphatase involved in regulating dynamin-dependent endocytosis.  相似文献   

9.
Mechanisms that mediate apoptosis resistance are attractive therapeutic targets for cancer. Protein kinase Cδ (PKCδ) is considered a pro-apoptotic factor in many cell types. In breast cancer, however, it has shown both pro-survival and pro-apoptotic effects. Here, we report for the first time that down-regulation of PKCδ per se leads to apoptosis of MDA-MB-231 cells. Inhibition of MEK1/2 by either PD98059 or U0126 suppressed the induction of apoptosis of PKCδ-depleted MDA-MB-231 cells but did not support survival of MCF-7 or MDA-MB-468 cells. Basal ERK1/2 phosphorylation was substantially higher in MDA-MB-231 cells than in the other cell lines. PKCδ depletion led to even higher ERK1/2 phosphorylation levels and also to lower expression levels of the ERK1/2 phosphatase MKP3. Depletion of MKP3 led to apoptosis and higher levels of ERK1/2 phosphorylation, suggesting that this may be a mechanism mediating the effect of PKCδ down-regulation. However, PKCδ silencing also induced increased MEK1/2 phosphorylation, indicating that PKCδ regulates ERK1/2 phosphorylation both upstream and downstream. Moreover, PKCδ silencing led to increased levels of the E3 ubiquitin ligase Nedd4, which is a potential regulator of MKP3, because down-regulation led to increased MKP3 levels. Our results highlight PKCδ as a potential target for therapy of breast cancers with high activity of the ERK1/2 pathway.  相似文献   

10.
The mammalian target of rapamycin (mTOR) signaling exists in two complexes: mTORC1 and mTORC2. Neurotensin (NT), an intestinal hormone secreted by enteroendocrine (N) cells in the small bowel, has important physiological effects in the gastrointestinal tract. The human endocrine cell line BON abundantly expresses the NT gene and synthesizes and secretes NT in a manner analogous to that of N cells. Here, we demonstrate that the inhibition of mTORC1 by rapamycin (mTORC1 inhibitor), torin1 (both mTORC1 and mTORC2 inhibitor) or short hairpin RNA-mediated knockdown of mTOR, regulatory associated protein of mTOR (RAPTOR), and p70 S6 kinase (p70S6K) increased basal NT release via upregulating NT gene expression in BON cells. c-Jun activity was increased by rapamycin or torin1 or p70S6K knockdown. c-Jun overexpression dramatically increased NT promoter activity, which was blocked by PD98059, an mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, overexpression of MEK1 or extracellular signal-regulated kinase 1 (ERK1) increased c-Jun expression and NT promoter activity. More importantly, PD98059 blocked rapamycin- or torin1-enhanced NT secretion. Consistently, rapamycin and torin1 also increased NT gene expression in Hep3B cells, a human hepatoma cell line that, similar to BON, expresses high levels of NT. Phosphorylation of c-Jun and ERK1/2 was also increased by rapamycin and torin1 in Hep3B cells. Finally, we showed activation of mTOR in BON cells treated with amino acids, high glucose, or serum and, concurrently, the attenuation of ERK1/2 and c-Jun phosphorylation and NT secretion. Together, mTORC1, as a nutrient sensor, negatively regulates NT secretion via the MEK/ERK/c-Jun signaling pathway. Our results identify a physiological link between mTORC1 and MEK/ERK signaling in controlling intestinal hormone gene expression and secretion.  相似文献   

11.
12.
13.
Protein kinase Cι (PKCι) is an atypical PKC isoform and participates in multiple aspects of the transformed phenotype in human cancer cells. We previously reported that frequent amplification and overexpression of PKCι were correlated with lymph node metastasis in primary esophageal squamous cell carcinomas (ESCC). In the present study, short interfering RNA-mediated silencing of PKCι revealed that this enzyme was required for cell migration, invasion, and resistance to anoikis. In vivo experiments showed that PKCι suppression decreased tumor growth in esophageal cancer xenografts and lung metastases in nude mice. At the molecular level, knockdown of PKCι in suspended ESCC cells caused a decrease in S-phase kinase-associated protein 2 (SKP2) that had been reported to promote resistance to anoikis via the PI3K/AKT pathway. AKT phosphorylation was abolished after PKCι suppression, but AKT activation could be refreshed by PKCι upregulation, suggesting that PKCι enhanced cell resistance to anoikis via the PKCι-SKP2-PI3K/AKT pathway. Addition of the proteasome inhibitor MG132 prevented the decrease of SKP2 in PKCι silenced cells, and polyubiquitin-SKP2 was elevated after PKCι depletion, showing that PKCι might regulate the expression of SKP2 through the ubiquitin-proteasome pathway in suspended cells. Furthermore, overexpression of SKP2 in PKCι-downregulated cells restored cell resistance to anoikis. Most importantly, PKCι expression significantly correlated with SKP2 in 133 ESCC tissues (P = 0.031). Taken together, our data show that PKCι promotes tumorigenicity and metastasis of human esophageal cancer and that SKP2 is a candidate downstream effector of PKCι signaling in ESCC.  相似文献   

14.
15.
Ovarian cancer has one of the highest mortalities in malignancies in women, but little is known of its tumour progression properties and there is still no effective molecule that can monitor its growth or therapeutic responses. MSLN (mesothelin), a secreted protein that is overexpressed in ovarian cancer tissues with a poor clinical outcome, has been previously identified to activate PI3K (phosphoinositide 3-kinase)/Akt signalling and inhibit paclitaxel-induced apoptosis. The present study investigates the correlation between MSLN and MMP (matrix metalloproteinase)-7 in the progression of ovarian cancer, and the mechanism of MSLN in enhancing ovarian cancer invasion. The expression of MSLN correlated well with MMP-7 expression in human ovarian cancer tissues. Overexpressing MSLN or ovarian cancer cells treated with MSLN showed enhanced migration and invasion of cancer cells through the induction of MMP-7. MSLN regulated the expression of MMP-7 through the ERK (extracellular-signal-regulated kinase) 1/2, Akt and JNK (c-Jun N-terminal kinase) pathways. The expression of MMP-7 and the migrating ability of MSLN-treated ovarian cancer cells were suppressed by ERK1/2- or JNK-specific inhibitors, or a decoy AP-1 (activator protein 1) oligonucleotide in in vitro experiments, whereas in vivo animal experiments also demonstrated that mice treated with MAPK (mitogen-activated protein kinase)/ERK- or JNK-specific inhibitors could decrease intratumour MMP-7 expression, delay tumour growth and extend the survival of the mice. In conclusion, MSLN enhances ovarian cancer invasion by MMP-7 expression through the MAPK/ERK and JNK signal transduction pathways. Blocking the MSLN-related pathway could be a potential strategy for inhibiting the growth of ovarian cancer.  相似文献   

16.
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.  相似文献   

17.
ZBP-89-induced apoptosis is p53-independent and requires JNK   总被引:1,自引:0,他引:1  
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.  相似文献   

18.
Deletion and mutation of phosphatase and tensin homolog deleted on chromosome10 (PTEN) are closely associated with the occurrence of tumors. Tumor suppressor gene PTEN mutation plays an important role in the pathogenesis of ovarian cancer. However, it has been unclear whether it can regulate the senescence of ovarian cancer cells. We speculated that PTEN might inhibit the occurrence and development of ovarian cancer by promoting the expression of P21. We found that the expression of TRIM39 in human ovarian cancer was significantly diminished. In SKOV3 cells treated with naringin, the expression of TRIM39, which binds P21 and inhibits P21 degradation, was significantly elevated. Real-time polymerase chain reaction (PCR), Western blot, and immunofluorescence were used to detected the expression of PTEN, p21, and TRIM39, β-galactosidase Staining was used to detect cell senescence, Ki67 staining was used to observe cell proliferation, Trim39 interference or overexpression assay was used to detect its function. We speculated that PTEN might promote SKOV3 cell senescence by increasing TRIM39 expression and decreasing P21 degradation. Furthermore, by interfering with TRIM39 in SKOV3 cells, we found that the expression of P21 was downregulated, and the number of senescent SKOV3 cells decreased. With overexpression of TRIM39 in SKOV3 cells, the expression of P21 was upregulated, and the number of senescent SKOV3 cells increased. When naringin, a PTEN agonist, was added to SKOV3 cells in which TRIM39 protein was interfered with, the expression of P21 was significantly lower than that in the control group, and the number of senescent ovarian cancer cells was significantly diminished. Our results indicated that PTEN maintained the stability of P21 and decreased the degradation of P21 by increasing TRIM39 expression, thus promoting the senescence of SKOV3 cells, and PTEN maintained the stability of p21 and promoted the aging of SKOV3 cells might be a novel therapeutic target for ovarian cancer.  相似文献   

19.
20.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号