首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
The experiments of mechanical isolation of medial hypothalamus from the lateral hypothalamus and the preoptic anterior hypothalamic (POAH) region in rats showed that: 1. The interruption of neural connections between POAH area and medial hypothalamus do not prevent the decrease of food intake which normally occur in a hot environment. 2. At 33 degrees C, hyperphagic rats gained more weight than sham-operated ones. 3. At 4 degrees C, rats made hyperphagic by hypothalamic isolation do not ajust their food intake for a long period and do not gain weight. 4. The excitatory pathways of the feeding center from the POAH area do not penetrate directly into the lateral hypothalamus, but rather into the medial retrochiasmatic area. 5. The temperature influences the diurnal pattern of feeding only in rats with intact or unilateral neural connections of the hypothalamic structures 6. It seems that the thermostatic mechanism, which is a potent regulator of feeding, is closely associated with the central control of thyrotropin release, and that the hypothalamic structures may be considered only as a necessary link in the nervous mechanism involved in feeding control.  相似文献   

2.
Autophagy has been recently demonstrated to control cell and tissue homeostasis, including the functions of various metabolic tissues. However, it remains unclear whether autophagy is critical for the central nervous system and particularly the hypothalamus for exerting metabolic regulation. Using autophagy-related protein 7 (Atg7) as an autophagic marker, this work showed that autophagy was highly active in the mediobasal hypothalamus of normal mice. In contrast, chronic development of dietary obesity was associated with autophagic decline in the mediobasal hypothalamus. To investigate the potential role of autophagy in the hypothalamic control of metabolic physiology, a mouse model was developed with autophagic inhibition in the mediobasal hypothalamus using site-specific delivery of lentiviral shRNA against Atg7. This model revealed that hypothalamic inhibition of autophagy increased energy intake and reduced energy expenditure. These metabolic changes were sufficient to increase body weight gain under normal chow feeding and exacerbate the progression of obesity and whole-body insulin resistance under high-fat diet feeding. To explore the underlying mechanism, this study found that defective hypothalamic autophagy led to hypothalamic inflammation, including the activation of proinflammatory IκB kinase β pathway. Using brain-specific IκB kinase β knockout mice, it was found that the effects of defective hypothalamic autophagy in promoting obesity were reversed by IκB kinase β inhibition in the brain. In conclusion, hypothalamic autophagy is crucial for the central control of feeding, energy, and body weight balance. Conversely, decline of hypothalamic autophagy under conditions of chronic caloric excess promotes hypothalamic inflammation and thus impairs hypothalamic control of energy balance, leading to accelerated development of obesity and comorbidities.  相似文献   

3.
Menopause is one of the triggers that induce obesity. Estradiol (E2), corticotropin-releasing hormone (CRH), and hypothalamic neuronal histamine are anorexigenic substances within the hypothalamus. This study examined the interactions among E2, CRH, and histamine during the regulation of feeding behavior and obesity in rodents. Food intake was measured in rats after the treatment of E2, α-fluoromethyl histidine, a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine, or CRH antagonist. We measured food intake and body weight in wild-type mice or mice with targeted disruption of the histamine receptors (H1-R) knockout (H1KO mice). Furthermore, we investigated CRH content and histamine turnover in the hypothalamus after the E2 treatment or ovariectomy (OVX). We used immunohistochemical staining for estrogen receptors (ERs) in the histamine neurons. The E2-induced suppression of feeding was partially attenuated in rats pre-treated with α-fluoromethyl histidine or CRH antagonist and in H1KO mice. E2 treatment increased CRH content and histamine turnover in the hypothalamus. OVX increased food intake and body weight, and decreased CRH content and histamine turnover in the hypothalamus. In addition, E2 replacement reversed the OVX-induced changes in food intake and body weight in wild-type mice but not in H1KO mice. Immunohistochemical analysis revealed ERs were expressed on histamine neurons and western blotting analysis and pre-absorption study confirmed the specificity of ER antiserum we used. These results indicate that CRH and hypothalamic neuronal histamine mediate the suppressive effects of E2 on feeding behavior and body weight.  相似文献   

4.
The role of hypothalamic malonyl-CoA in energy homeostasis   总被引:1,自引:0,他引:1  
Energy balance is monitored by hypothalamic neurons that respond to peripheral hormonal and afferent neural signals that sense energy status. Recent physiologic, pharmacologic, and genetic evidence has implicated malonyl-CoA, an intermediate in fatty acid synthesis, as a regulatory component of this energy-sensing system. The level of malonyl-CoA in the hypothalamus is dynamically regulated by fasting and feeding, which alter subsequent feeding behavior. Fatty acid synthase (FAS) inhibitors, administered systemically or intracerebroventricularly to lean or obese mice, increase hypothalamic malonyl-CoA leading to the suppression of food intake. Conversely, lowering malonyl-CoA with an acetyl-CoA carboxylase (ACC) inhibitor or by the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus increases food intake and reverses inhibition by FAS inhibitors. Physiologically, the level of hypothalamic malonyl-CoA appears to be determined through phosphorylation/dephosphorylation of ACC by AMP kinase in response to changes in the AMP/ATP ratio, an indicator of energy status. Recent evidence suggests that the brain-specific carnitine:palmitoyl-CoA transferase-1 (CPT1c) may be a regulated target of malonyl-CoA that relays the "malonyl-CoA signal" in hypothalamic neurons that express the orexigenic and anorexigenic neuropeptides that regulate food intake and peripheral energy expenditure. Together these findings support a role for malonyl-CoA as an intermediary in the control of energy homeostasis.  相似文献   

5.
6.
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.  相似文献   

7.
Yue JT  Lam TK 《Cell metabolism》2012,15(5):646-655
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.  相似文献   

8.
Glutamate acts in the hypothalamus promoting region-, and cell-dependent effects on feeding. Part of these effects are mediated by NMDA receptors, which are up regulated in conditions known to promote increased food intake and thermogenesis, such as exposure to cold and consumption of highly caloric diets. Here, we hypothesized that at least part of the effect of glutamate on hypothalamic control of energy homeostasis would depend on the control of neurotransmitter expression and JAK2 signaling. The expression of NMDA receptors was co-localized to NPY/AgRP, POMC, CRH, and MCH but not to TRH and orexin neurons of the hypothalamus. The acute intracerebroventricular injection of glutamate promoted a dose-dependent increase in JAK2 tyrosine phosphorylation. In obese rats, 5 days intracerebroventricular treatment with glutamate resulted in the reduction of food intake, accompanied by a reduction of spontaneous motility and reduction of body mass, without affecting oxygen consumption. The reduction of food intake and body mass were partially restrained by the inhibition of JAK2. In addition, glutamate produced an increased hypothalamic expression of NPY, POMC, CART, MCH, orexin, CRH, and TRH, and the reduction of AgRP. All these effects on neurotransmitters were hindered by the inhibition of JAK2. Thus, the intracerebroventricular injection of glutamate results in the reduction of body mass through a mechanism, at least in part, dependent on JAK2, and on the broad regulation of neurotransmitter expression. These effects are not impaired by obesity, which suggest that glutamate actions in the hypothalamus may be pharmacologically explored to treat this disease.  相似文献   

9.
It is widely believed that the primary physiologic role of leptin is to prevent obesity by regulating food intake and thermogenesis through actions on hypothalamic centers. Here we sugest that the first premise, the anti-obesity role, is untenable, and present evidence for an alternative physiologic role, namely antisteatotic activity in which fatty acid overaccumulation in nonadipose tissues is prevented by leptin-mediated regulation of beta-oxidation. The second premise, namely that leptin acts exclusively on the hypothalamus, is confirmed in normal lean animals with plasma leptin concentrations below 5 ng/ml; their correlation with cerebrospinal fluid levels supports the classical concept of leptin-mediated hypothalamic regulation of food intake. However, when chronic hyperleptinemia exceeds 15 ng/ml, as in obesity, a further rise in plasma leptin does not raise cerebrospinal leptin levels or reduce food intake. Nevertheless, the peripheral antisteatotic action of leptin in acquired obesity continues, suggesting that at chronically hyperleptinemic levels the hormone acts primarily on peripheral tissues and that its hypothalamic action has reached a plateau.  相似文献   

10.
Central structures involved in opioid-induced feeding   总被引:1,自引:0,他引:1  
This paper summarizes efforts to identify structures involved in the opioid regulation of feeding. Many opioid agonists and antagonists increase or decrease food intake when injected centrally, which suggests, but alone does not prove, that the opioid feeding system is located within the brain. Some conditions of hunger and feeding cause changes in opioid peptide levels in certain brain areas, notably the hypothalamus, which may indicate that the areas are components of this opioid system. Lesion studies have also identified some potentially important structures, inasmuch as lesions of these structures reduce the effectiveness of opioid agonists or antagonists to alter food intake. Finally, microinjection studies have mapped the brain in terms of the effects on feeding of opioid agonists and antagonists. Results of different types of studies are consistent in suggesting that parts of the hypothalamus, particularly the paraventricular and ventromedial nuclei and the lateral hypothalamic area, are important components of the opioid feeding system.  相似文献   

11.
The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD) accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.  相似文献   

12.
AMP-activated protein kinase plays a role in the control of food intake   总被引:32,自引:0,他引:32  
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs.  相似文献   

13.
The hypothalamus responds to circulating leptin and insulin in the control of food intake and body weight. A number of neurotransmitters in the hypothalamus, including gamma-aminobutyric acid (GABA), also have key roles in feeding. Huntingtin-associated protein 1 (Hap1) is expressed more abundantly in the hypothalamus than in other brain regions, and lack of Hap1 in mice leads to early postnatal death. Hap1 is also involved in intracellular trafficking of the GABA(A) receptor. Here, we report that fasting upregulates the expression of Hap1 in the rodent hypothalamus, whereas intracerebroventricular administration of insulin downregulates Hap1 by increasing its degradation through ubiquitination. Decreasing the expression of mouse hypothalamic Hap1 by siRNA reduces the level and activity of hypothalamic GABA(A) receptors and causes a decrease in food intake and body weight. These findings provide evidence linking hypothalamic Hap1 to GABA in the stimulation of feeding and suggest that this mechanism is involved in the feeding-inhibitory actions of insulin in the brain.  相似文献   

14.
This review begins with James Olds' discovery that self-stimulation at various brain sites can be influenced by food intake or androgen treatment. It then describes our research designed to reveal the functional significance of self-stimulation. The evidence suggests that lateral hypothalamic self-stimulation is controlled by many of the same factors that control feeding. We believe this control is exerted by at least two neural mechanisms. One is the classical, medial hypothalamic satiety system. Another is an adrenergic system ascending from the midbrain to the lateral hypothalamus. Damage to either one can disinhibit self-stimulation and feeding, thus contributing to obesity. Some of our studies use rats with two electrodes, one that induces feeding and one that induces mating. There are two response levers in the test cage, one for self-stimulation and one for escape from automatic stimulation. With the feeding electrode, rats self-stimulated less and escaped more after a meal than before. The same shift occurred after an anorectic dose of insulin or the commercial appetite suppressant phenylpropanolamine. With the sex electrode the shift from reward to aversion occurred after ejaculation. The review ends with credit to James Olds for pioneering this line of research into the neuropsychology of reinforcement.  相似文献   

15.
INJECTIONS of adrenergic drugs into the hypothalamus of the rat have a wide variety of effects on feeding. Depending on site of injection, dosage, the rat's hunger state and the drugs' peripheral alpha or beta characteristics, food intake may be elicited1–7 or suppressed7–9, or reactions to particular tastes may be modified either directly10–12 or by associative learning13. Such effects have been thought to result from the action of the injected drugs on synaptic receptors that normally respond to endogenous catecholamines. Adrenergic drugs can have marked effects on brain glycogen, however, varying widely in time course and direction between drugs and doses14–17. Drug-induced glycogenolysis might appreciably increase or decrease the supply of glucose to neurones affected. The firing rates of some neurones in both the ventromedial and lateral regions of the rat hypothalamus are influenced by the local concentration of glucose18,19. Furthermore, many of these glucosensitive units are affected by amphetamine19, which increases the amount of noradrenaline at the synapse20, inhibits feeding when injected into the hypothalamus9 and facilitates feeding when injected either with propranolol into the lateral hypothalamus or by itself into the ventromedial hypothalamus6. Although it has yet to be proved that hypothalamic glucose-sensitive neurones control normal feeding, the question arises whether any of the effects of hypothalamic injection of adrenergic drugs on feeding arise from metabolic rather than synaptic action.  相似文献   

16.
Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding.Here we show that chronic loss of the rat MCH-precursor Pmch decreased food intake predominantly via a reduction in meal size during rat development and reduced high-fat food-reinforced operant responding in adult rats. Moreover, acute AcbSh administration of Neuropeptide-GE and Neuropeptide-EI (NEI), both additional neuropeptides derived from Pmch, or chronic intracerebroventricular infusion of NEI, did not affect feeding behavior in adult pmch(+/+) or pmch(-/-) rats. However, acute administration of MCH to the AcbSh of adult pmch(-/-) rats elevated feeding behavior towards wild type levels. Finally, adult pmch(-/-) rats showed increased ex vivo electrically evoked dopamine release and increased limbic dopamine transporter levels, indicating that chronic loss of Pmch in the rat affects the limbic dopamine system.Our findings support the MCH-MCH1R system as an amplifier of consummatory behavior, confirming this system as a possible target for the treatment of obesity. We propose that MCH-mediated signaling in the AcbSh positively mediates motivational aspects of feeding behavior. Thereby it provides a crucial signal by which hypothalamic neural circuits control energy balance and guide limbic brain areas to enhance motivational or incentive-related aspects of food consumption.  相似文献   

17.
18.
Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.  相似文献   

19.
The obesity pandemic can be viewed as a result of an imbalanced reaction to changing environmental factors. Recent research has linked circadian arrhythmicity to obesity and related diseases; however, the underlying mechanisms are still unclear. In this study, we found that high-fat diet (HFD) feeding strikingly promoted daytime rather than nighttime caloric intake in mice, leading to feeding circadian arrhythmicity. Using scheduled feeding with a defined amount of daily HFD intake, we found that an increase in the ratio of daytime to nighttime feeding promoted weight gain, whereas a decrease of this ratio rebalanced energy expenditure to counteract obesity. In identifying the underlying mechanism, we found that hypothalamic release of anorexigenic neuropeptide oxytocin displayed a diurnal rhythm of daytime rise and nighttime decline, which negatively correlated with the diurnal feeding activities of normal chow-fed mice. In contrast, chronic HFD feeding abrogated oxytocin diurnal rhythmicity, primarily by suppressing daytime oxytocin rise. Using pharmacological experiments with hypothalamic injection of oxytocin or oxytocin antagonist, we showed that daytime manipulation of oxytocin can change feeding circadian patterns to reprogram energy expenditure, leading to attenuation or induction of obesity independently of 24-h caloric intake. Also importantly, we found that peripheral injection of oxytocin activated hypothalamic oxytocin neurons to release oxytocin, and exerted metabolic effects similar to central oxytocin injection, thus offering a practical clinical avenue to use oxytocin in obesity control. In conclusion, resting-stage oxytocin release and feeding activity represent a critical circadian mechanism and therapeutic target for obesity.  相似文献   

20.
The neuropeptide galanin (GAL) has been found to elicit eating after injection into the hypothalamic paraventricular nucleus (PVN). To determine whether GAL's effect in the brain is anatomically specific, this peptide (0.1 or 0.3 nmol) was microinjected into one of 14 different brain areas of rats, and its impact on subsequent food intake was measured. Among the hypothalamic sites tested, only the PVN and the adjacent periventricular region yielded a significant eating response to GAL. With injection into the PVN, a feeding response was observed without apparent changes in other food-associated behaviors, e.g., drinking, grooming, resting and sleeping, or low and high levels of activity. All other hypothalamic and extrahypothalamic sites tested were unresponsive to GAL, with the exception of the amygdala where a significant eating response was observed. These findings suggest that central GAL elicits feeding by acting in an anatomically localized and behaviorally specific manner. In light of other pharmacological and anatomical evidence, it is suggested the PVN GAL, in modulating feeding behavior, may work in association with the catecholamine norepinephrine (NE) which is known to coexist with GAL in PVN neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号