首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
在猫外膝体脑片上用单电极电压钳位的方法研究了低阈值T-型钙离子通道的动力学特性.采用阻断各种钾和钠离子通道、减小钙离子电流和选择适当的维持电位等方法,改善了脑片实验的空间钳位.所得结果与大鼠外膝体急性分离神经元的结果一致.说明猫外膝体神经元T-型钙离子通道的动力学特性与大鼠的相同.  相似文献   

2.
钾通道活化剂可激活钾离子通道并松驰支气管平滑肌,在急性分离的豚鼠支气管平滑肌细胞上,用膜片钳技术的细胞贴附式和内面向外式研究了其对电压依赖性钾通道的直接作用。结果证实:在全细胞记录条件下,卡吗克林和拉吗克林不影响静息膜电位。但在去极化时可使通道电导从75.2±5.1pS分别增大到85.9±11.8pS和82.1±5.5pS。通道动力学特性也发生了改变,通道平均开放时间的τo2值延长和开放概率显著增加,其中拉吗克林的作用更为强。两者均可诱发通道出现多级开放。表明这两类活化剂可使去极化时钾离子外流增加。  相似文献   

3.
吴庆  任俊 《生理学报》1997,49(4):407-413
本文用膜片箝技术研究了孕烯酮硫酸醌对大脑皮层锥体神经元膜48pS延迟整流型钾通道开放概率和平均开放时间的影响。在加入PS后40s,即可观察到IK通道的开放概率增大,平均开放时间延长,表明PS加强IK通道的活动。在浓度为300-100μmol/L的范围内,其增大程度与PS的浓度呈正相关,但PS不影响通道的电流幅度。  相似文献   

4.
本文用膜片箝技术(细胞贴附式和内面向外式)研究了乙醇对大脑皮层锥体神经元膜上延迟整流型钾通道(Ik)开放概率、开放频率和开放幅度的影响。150~550mmol/L的乙醇抑制Ik通道开放概率、开放频率,随乙醇浓度增大,抑制作用增强,但不影响通道的电流幅度。450mmol/L乙醇对Ik通道开放概率和开放频率的抑制程度在两种记录模式之间差异无显著性。50mmol/L的乙醇不影响Ik通道的动力学特性。本文结果为阐明乙醇对神经系统的作用机制提供有关单离子通道方面的资料  相似文献   

5.
烟草根皮层原生质体质膜钾通道的特性研究   总被引:5,自引:0,他引:5  
采用膜片钳技术对烟草根皮层原生质体质膜上的钾通道进行全细胞记录,从而深入研究烟草K^+的吸收机制和调控机理。结果表明,内向钾通道在膜电压低于-40mV时,可以被K^+激活。内向电流可以被钾通道的专一抑制剂TEA^+抑制。动力学分析表明内向钾电流产生的K^+表观解离常数(Km)≈15.2mmol/L,类似于低亲和性钾通道。该通道具有依赖于胞外K^+浓度的特性,对胞外NH4^+、Ca^2+、Mg^2+浓度变化反应敏感,内向K^+电流可被不同程度地抑制。  相似文献   

6.
延迟整流型钾通道在动作电位的复极化和时程控制以及绝对不应期的形成中充当重要角色.本文用细胞贴附式和内面向外式膜片箝技术研究了急性分离的SD大鼠大脑皮层神经元上延迟整流型钾通道的特性和阻断剂对其的作用,对推动钾通道的研究,了解皮层神经元电活动的规律有重要意义.  相似文献   

7.
目的:研究大鼠脑发育不同时期学习记忆的变化及与NMDA受体通道动力学特性的关系。方法:采用学习记忆行为和离子通道动力学特性测定相结合的方法。结果:在爬杆主动回避反应中,发育早期大鼠习得和保持能力场明显强于成年大鼠。同时,发育早期大鼠训练后NM受体pS导电,而且35PS通道开放时间和开放概率增加,35PS通道长开放成份增多,有长cluster开放而砀上大鼠20S,35PS通道关闭时间常数明显长于年龄  相似文献   

8.
电压门控钾通道Kv1.3和钙激活钾通道KCa3.1是单核/巨噬细胞上的两种钾通道。本文旨在研究阻断Kv1.3和KCa3.1钾通道对于单核/巨噬细胞增殖和趋化功能的影响。用趋化实验检测单核/巨噬细胞对Ly-6Chi单核细胞(炎症型单核细胞)的趋化作用,用CCK8试剂盒检测单核/巨噬细胞的增殖情况,用ELISA法检测趋化因子CCL7的浓度变化,用趋化实验检测趋化因子CCL2和CCL7对炎症型单核细胞的趋化作用。结果显示,结果显示,分别用KCa3.1特异性阻断剂TRAM-34和Kv1.3强效阻断剂Sh K阻断这两种钾离子通道后,单核/巨噬细胞对Ly-6Chi单核细胞的趋化能力降低;Sh K使单核/巨噬细胞增殖受到显著抑制。用TRAM-34和Sh K孵育过的Ly-6Chi单核细胞对CCL2的敏感性下降。以上结果提示,Kv1.3和KCa3.1钾通道在单核/巨噬细胞活化、增殖和趋化过程起重要作用,这两种钾通道有望成为自身免疫性疾病和急性心肌梗死后心肌重塑调节的靶点。  相似文献   

9.
SHRsp内脏阻力血管平滑肌钙通道动力学特征   总被引:3,自引:0,他引:3  
用膜片箝全细胞钡电流方式比较成年雄性卒中易感型自发性高血压大鼠(SHRsp)及正常大鼠(Wistar)肠系膜动脉A4-A5分支阻力血管平滑肌电压依赖性钙通道的动力学特性。结果发现:1)两种大鼠该段均存在有L型与T型钙通道。2)峰值电流(peakIBa2+)幅度和密度SHRsp均大于Wistar大鼠。3)通道激活时间常数(τa)SHRsp小于Wistar大鼠,失活时间常数(τi)于箝制电压(HP)=-40mV时,两种大鼠无区别,HP=-80mV时,SHRsp显著大于Wistar。4)和Wistar大鼠相比较,SHRsp的稳态激活曲线(D∞)与稳态失活曲线(F∞),均呈现左移。SHRsp肠系膜动脉阻力血管平滑肌电压依赖性钙通道的如此特征更有利于胞外钙离子进入胞内。而关于内脏阻力血管的实验结果迄今鲜有报道。  相似文献   

10.
心肌细胞L型钙通道研究进展   总被引:2,自引:0,他引:2  
心肌细胞膜上存在两种不同类型电压依赖性钙通道,其中L型 通道具有重要的意义,与某些心血管疾病珠发生及治疗密切相关,研究也最为深入。本文就近年来有关心肌L型钲 通道分子撑结构,门控特征,动力学模型,调节机制等方面的研究进展作一综述。  相似文献   

11.
12.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

13.
Kv4 channels are thought to lack a C-type inactivation mechanism (collapse of the external pore) and to inactivate as a result of a concerted action of cytoplasmic regions of the channel. To investigate whether Kv4 channels have outer pore conformational changes during the inactivation process, the inactivation properties of Kv4.3 were characterized in 0 mM and in 2 mM external K+ in whole-cell voltage-clamp experiments. Removal of external K+ increased the inactivation rates and favored cumulative inactivation by repetitive stimulation. The reduction in current amplitude during repetitive stimulation and the faster inactivation rates in 0 mM external K+ were not due to changes in the voltage dependence of channel opening or to internal K+ depletion. The extent of the collapse of the K+ conductance upon removal of external K+ was more pronounced in NMG+-than in Na+-containing solutions. The reduction in the current amplitude during cumulative inactivation by repetitive stimulation is not associated with kinetic changes, suggesting that it is due to a diminished number of functional channels with unchanged gating properties. These observations meet the criteria for a typical C-type inactivation, as removal of external K+ destabilizes the conducting state, leading to the collapse of the pore. A tentative model is presented, in which K+ bound to high-affinity K+-binding sites in the selectivity filter destabilizes an outer neighboring K+ modulatory site that is saturated at approximately 2 mM external K+. We conclude that Kv4 channels have a C-type inactivation mechanism and that previously reported alterations in the inactivation rates after N- and C- termini mutagenesis may arise from secondary changes in the electrostatic interactions between K+-binding sites in the selectivity filter and the neighboring K+-modulatory site, that would result in changes in its K+ occupancy.  相似文献   

14.
We have examined the molecular mechanism of rapid inactivation gating in a mouse Shal K+ channel (mKv4.1). The results showed that inactivation of these channels follows a complex time course that is well approximated by the sum of three exponential terms. Truncation of an amphipathic region at the N-terminus (residues 2-71) abolished the rapid phase of inactivation (r = 16 ms) and altered voltage-dependent gating. Surprisingly, these effects could be mimicked by deletions affecting the hydrophilic C-terminus. The sum of two exponential terms was sufficient to describe the inactivation of deletion mutants. In fact, the time constants corresponded closely to those of the intermediate and slow phases of inactivation observed with wild-type channels. Further analysis revealed that several basic amino acids at the N-terminus do not influence inactivation, but a positively charged domain at the C-terminus (amino acids 420-550) is necessary to support rapid inactivation. Thus, the amphipathic N-terminus and the hydrophilic C-terminus of mKv4.1 are essential determinants of inactivation gating and may interact with each other to maintain the N-terminal inactivation gate near the inner mouth of the channel. Furthermore, this inactivation gate may not behave like a simple open-channel blocker because channel blockade by internal tetraethylammonium was not associated with slower current decay and an elevated external K+ concentration retarded recovery from inactivation.  相似文献   

15.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

16.
Recovery from C-type inactivation of Kv1.3 can be accelerated by the binding of extracellular potassium to the channel in a voltage-dependent fashion. Whole-cell patch-clamp recordings of human T lymphocytes show that Ko+ can bind to open or inactivated channels. Recovery is biphasic with time constants that depend on the holding potential. Recovery is also dependent on the voltage of the depolarizing pulse that induces the inactivation, consistent with a modulatory binding site for K+ located at an effective membrane electrical field distance of 30%. This K(+)-enhanced recovery can be further potentiated by the binding of extracellular tetraethylammonium to the inactivated channel, although the tetraethylammonium does not interact directly with the K(+)-binding site. Our findings are consistent with a model in which K+ can bind and unbind slowly from a channel in the inactivated state, and inactivated channels that are bound by K+ will recover with a rate that is fast relative to unbound channels. Our data suggest that the kinetics of K+ binding to the modulatory site are slower than these recovery rates, especially at hyperpolarized voltages.  相似文献   

17.
While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  相似文献   

18.
Most BK-type voltage- and Ca(2+)-dependent K+ channels in rat chromaffin cells exhibit rapid inactivation. This inactivation is abolished by brief trypsin application to the cytosolic face of membrane patches. Here we examine the effects of cytosolic channel blockade and pore occupancy on this inactivation process, using inside-out patches and whole-cell recordings. Occupancy of a superficial pore-blocking site by cytosolic quaternary blockers does not slow inactivation. Occupancy of a deeper pore-blocking site by cytosolic application of Cs+ is also without effect on the onset of inactivation. Although the rate of inactivation is relatively unaffected by changes in extracellular K+, the rate of recovery from inactivation (at -80 and -140 mV with 10 microM Ca2+) is faster with increases in extracellular K+ but is unaffected by the impermeant ion, Na+. When tail currents are compared after repolarization, either while channels are open or after inactivation, no channel reopening is detectable during recovery from inactivation. BK inactivation appears to be mechanistically distinct from that of other inactivating voltage-dependent channels. Although involving a trypsin-sensitive cytosolic structure, the block to permeation does not appear to occur directly at the cytosolic mouth or inner half of the ion permeation pathway.  相似文献   

19.
Slow inactivation occurs in voltage-gated Na+ channels when the membrane is depolarized for several seconds, whereas fast inactivation takes place rapidly within a few milliseconds. Unlike fast inactivation, the molecular entity that governs the slow inactivation of Na+ channels has not been as well defined. Some regions of Na+ channels, such as mu1-W402C and mu1-T698M, have been reported to affect slow inactivation. A mutation in segment I-S6 of mu1 Na+ channels, N434A, shifts the voltage dependence of activation and fast inactivation toward the depolarizing direction. The mutant Na+ current at +50 mV is diminished by 60-80% during repetitive stimulation at 5 Hz, resulting in a profound use-dependent phenomenon. This mutant phenotype is due to the enhancement of slow inactivation, which develops faster than that of wild-type channels (tau = 0.46 +/- 0.01 s versus 2.11 +/- 0.10 s at +30 mV, n = 9). An oxidant, chloramine-T, abolishes fast inactivation and yet greatly accelerates slow inactivation in both mutant and wild-type channels (tau = 0.21 +/- 0.02 s and 0.67 +/- 0.05 s, respectively, n = 6). These findings together demonstrate that N434 of mu1 Na+ channels is also critical for slow inactivation. We propose that this slow form of Na+ channel inactivation is analogous to the "C-type" inactivation in Shaker K+ channels.  相似文献   

20.
The inactivation gating of hERG channels is important for the channel function and drug-channel interaction. Whereas hERG channels are highly selective for K+, we have found that inactivated hERG channels allow Na+ to permeate in the absence of K+. This provides a new way to directly monitor and investigate hERG inactivation. By using whole cell patch clamp method with an internal solution containing 135 mM Na+ and an external solution containing 135 mM NMG+, we recorded a robust Na+ current through hERG channels expressed in HEK 293 cells. Kinetic analyses of the hERG Na+ and K+ currents indicate that the channel experiences at least two states during the inactivation process, an initial fast, less stable state followed by a slow, more stable state. The Na+ current reflects Na+ ions permeating through the fast inactivated state but not through the slow inactivated state or open state. Thus the hERG Na+ current displayed a slow inactivation as the channels travel from the less stable, fast inactivated state into the more stable, slow inactivated state. Removal of fast inactivation by the S631A mutation abolished the Na+ current. Moreover, acceleration of fast inactivation by mutations T623A, F627Y, and S641A did not affect the hERG Na+ current, but greatly diminished the hERG K+ current. We also found that external Na+ potently blocked the hERG outward Na+ current with an IC50 of 3.5 mM. Mutations in the channel pore and S6 regions, such as S624A, F627Y, and S641A, abolished the inhibitory effects of external Na+ on the hERG Na+ current. Na+ permeation and blockade of hERG channels provide novel ways to extend our understanding of the hERG gating mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号