首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trol locus of Drosophila regulates the timing of neuroblast proliferation. In trol mutants, quiescent neuroblasts fail to begin division. We have investigated this cell cycle arrest to examine trol function. Induced expression of cyclin E or DP/E2F in trol mutants results in normal levels of dividing neuroblasts, while cyclin B expression has no effect. cyclin E expression is lower in the trol mutant larval CNS as assayed by quantitative RT-PCR, suggesting that trol neuroblasts are arrested in G1 due to lack of Cyclin E. Neither cyclin E nor E2F expression can phenocopy ana mutations, indicating that arrest caused by lack of Trol is different from Ana-mediated arrest.  相似文献   

2.
The heparin sulfate proteoglycan Terribly Reduced Optic Lobes (Trol) is the Drosophila melanogaster homolog of the vertebrate protein Perlecan. Trol is expressed as part of the extracellular matrix (ECM) found in the hematopoietic organ, called the lymph gland. In the normal lymph gland, the ECM forms thin basement membranes around individual or small groups of blood progenitors. The pattern of basement membranes, reported by Trol expression, is spatio-temporally correlated to hematopoiesis. The central, medullary zone which contain undifferentiated hematopoietic progenitors has many, closely spaced membranes. Fewer basement membranes are present in the outer, cortical zone, where differentiation of blood cells takes place. Loss of trol causes a dramatic change of the ECM into a three-dimensional, spongy mass that fills wide spaces scattered throughout the lymph gland. At the same time proliferation is reduced, leading to a significantly smaller lymph gland. Interestingly, differentiation of blood progenitors in trol mutants is precocious, resulting in the break-down of the usual zonation of the lymph gland. which normally consists of an immature center (medullary zone) where cells remain undifferentiated, and an outer cortical zone, where differentiation sets in. We present evidence that the effect of Trol on blood cell differentiation is mediated by Hedgehog (Hh) signaling, which is known to be required to maintain an immature medullary zone. Overexpression of hh in the background of a trol mutation is able to rescue the premature differentiation phenotype. Our data provide novel insight into the role of the ECM component Perlecan during Drosophila hematopoiesis.  相似文献   

3.
4.
The tumor suppressor APC and its homologs, first identified for a role in colon cancer, negatively regulate Wnt signaling in both oncogenesis and normal development, and play Wnt-independent roles in cytoskeletal regulation. Both Drosophila and mammals have two APC family members. We further explored the functions of the Drosophila APCs using the larval brain as a model. We found that both proteins are expressed in the brain. APC2 has a highly dynamic, asymmetric localization through the larval neuroblast cell cycle relative to known mediators of embryonic neuroblast asymmetric divisions. Adherens junction proteins also are asymmetrically localized in neuroblasts. In addition they accumulate with APC2 and APC1 in nerves formed by axons of the progeny of each neuroblast-ganglion mother cell cluster. APC2 and APC1 localize to very different places when expressed in the larval brain: APC2 localizes to the cell cortex and APC1 to centrosomes and microtubules. Despite this, they play redundant roles in the brain; while each single mutant is normal, the zygotic double mutant has severely reduced numbers of larval neuroblasts. Our experiments suggest that this does not result from misregulation of Wg signaling, and thus may involve the cytoskeletal or adhesive roles of APC proteins.  相似文献   

5.
6.
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.  相似文献   

7.
Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.  相似文献   

8.
9.
Sato T  Ogata J  Niki Y 《Zoological science》2010,27(10):804-810
The germline is segregated from the remainder of the soma during early embryonic development in metazoan species. In Drosophila, female primordial germ cells (PGCs) continue to proliferate during larval development, and become germline stem cells at the early pupal stage. To elucidate the roles of growth factors in larval PGC division, we examined expression patterns of a bone morphogenetic protein (BMP) growth factor, Decapentaplegic (Dpp), and Hedgehog (Hh), along with factors downstream of each, in the ovary during larval development. Dpp signaling appeared in the ovarian soma from early larval development, and was prominent in the terminal filament cells at late larval stage, whereas Hh appeared in the ovarian soma and PGCs from the third instar larval stage. The number of PGCs decreased when components of these signal transduction pathways were abrogated by RNAi in the PGCs, indicating that both Dpp and Hh signals directly regulate PGC proliferation. Experiments on the up- and down-regulation of Dpp and Hh with a tissue-specific Gal4 driver indicated that Dpp and Hh act as extrinsic and autocrine growth factors. Furthermore, heat-pulse experiments with hs-Gal4 showed that Dpp is active in PGC proliferation throughout larval development, whereas Hh has effects only during late larval development. In addition to Dpp, the reduction of Glass bottom boat (Gbb), another BMP molecule, caused a decrease in the number of PGCs and initiation of larval PGCs differentiation into cystocytes, indicating that Gbb functions to promote PGC division and repress differentiation.  相似文献   

10.
Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.  相似文献   

11.
Development of a multicellular organism requires precise coordination of cell division and cell type determination. The selector homeoprotein Even skipped (Eve) plays a very specific role in determining cell identity in the Drosophila embryo, both during segmentation and in neuronal development. However, studies of gene expression in eve mutant embryos suggest that eve regulates the embryonic expression of the vast majority of genes. We present here genetic interaction and phenotypic analysis showing that eve functions in the trol pathway to regulate the onset of neuroblast division in the larval CNS. Surprisingly, Eve is not detected in the regulated neuroblasts, and culture experiments reveal that Eve is required in the body, not the CNS. Furthermore, the effect of an eve mutation can be rescued both in vivo and in culture by the hormone ecdysone. These results suggest that eve is required to produce a trans-acting factor that stimulates cell division in the larval brain.  相似文献   

12.
Summary The pattern of neuroblast divisions was studied in thoracic and abdominal neuromeres of wild-type Drosophila melanogaster embryos stained with a monoclonal antibody directed against a chromatin-associated antigen. Since fixed material was used, our conclusions are based upon the statistical evaluation of a large number of accurately staged embryos, covering the stages between the formation of the cephalic furrow up to shortened germ band. Our observations point to a rather stereotypic pattern of proliferation, consisting of several parasynchronous cycles of division. The data suggest that all SI neuroblasts divide at least eight times, all SII neuroblasts six or seven times and all SIII neuroblasts at least five times. This conclusion is based on the mapping of mitotic neuroblasts and is supported by the progressive reduction of the neuroblast volume and by the results of cell countings performed on embryos of increasing age. No conclusive evidence was obtained concerning the fate of the neuroblasts after their last mitosis, i.e. it cannot be decided whether the neuroblasts degenerate or become incorporated as inconspicuous cells in the larval ventral cord. The duration of the cycles of division of the neuroblasts was found to be 40–50 min each, while in the case of ganglion mother cells about 100 min are required to complete one cell cycle.  相似文献   

13.
Asymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity. It preferentially binds to the aPKC/Bazooka/Partition Defective 6 complex and stabilizes aPKC levels. In clu mutants, Miranda (Mira) and Numb are mislocalized in small percentages of dividing neuroblasts. Adult mutants are short-lived with severe locomotion defects. Clu promotes tumorigenesis caused by loss of function of lethal(2) giant larvae (lgl) in the larval brain. Removal of clu in lgl mutants rescues Mira and Numb mislocalization and restores the enlarged brain size. Western blot analyses indicate that the rescue is due to the down-regulation of aPKC levels in the lgl clu double mutant. Interestingly, the phenotype of the park mutant, which causes Parkinson's Disease-like symptoms in adult flies, is reminiscent of that of clu in neuroblast asymmetric division. Our study provides the first clue for the potential missing pathological link between temporally separated neurogenesis and neurodegeneration events; the minor defects during early neurogenesis could be a susceptible factor contributing to neurodegenerative diseases at later stages of life.  相似文献   

14.
During asymmetric stem cell division, polarization of the cell cortex targets fate determinants unequally into the sibling daughters, leading to regeneration of a stem cell and production of a progenitor cell with restricted developmental potential. In mitotic neural stem cells (neuroblasts) in fly larval brains, the antagonistic interaction between the polarity proteins Lethal (2) giant larvae (Lgl) and atypical Protein Kinase C (aPKC) ensures self-renewal of a daughter neuroblast and generation of a progenitor cell by regulating asymmetric segregation of fate determinants. In the absence of lgl function, elevated cortical aPKC kinase activity perturbs unequal partitioning of the fate determinants including Numb and induces supernumerary neuroblasts in larval brains. However, whether increased aPKC function triggers formation of excess neuroblasts by inactivating Numb remains controversial. To investigate how increased cortical aPKC function induces formation of excess neuroblasts, we analyzed the fate of cells in neuroblast lineage clones in lgl mutant brains. Surprisingly, our analyses revealed that neuroblasts in lgl mutant brains undergo asymmetric division to produce progenitor cells, which then revert back into neuroblasts. In lgl mutant brains, Numb remained localized in the cortex of mitotic neuroblasts and failed to segregate exclusively into the progenitor cell following completion of asymmetric division. These results led us to propose that elevated aPKC function in the cortex of mitotic neuroblasts reduces the function of Numb in the future progenitor cells. We identified that the acyl-CoA binding domain containing 3 protein (ACBD3) binding region is essential for asymmetric segregation of Numb in mitotic neuroblasts and suppression of the supernumerary neuroblast phenotype induced by increased aPKC function. The ACBD3 binding region of Numb harbors two aPKC phosphorylation sites, serines 48 and 52. Surprisingly, while the phosphorylation status at these two sites directly impinged on asymmetric segregation of Numb in mitotic neuroblasts, both the phosphomimetic and non-phosphorylatable forms of Numb suppressed formation of excess neuroblasts triggered by increased cortical aPKC function. Thus, we propose that precise regulation of cortical aPKC kinase activity distinguishes the sibling cell identity in part by ensuring asymmetric partitioning of Numb into the future progenitor cell where Numb maintains restricted potential independently of regulation by aPKC.  相似文献   

15.
Holometabolous insects like Drosophila proceed through two phases of visual system development. The embryonic phase generates simple eyes of the larva. The postembryonic phase produces the adult specific compound eyes during late larval development and pupation. In primitive insects, by contrast, eye development persists seemingly continuously from embryogenesis through the end of postembryogenesis. Comparative literature suggests that the evolutionary transition from continuous to biphasic eye development occurred via transient developmental arrest. This review investigates how the developmental arrest model relates to the gene networks regulating larval and adult eye development in Drosophila, and embryonic compound eye development in primitive insects. Consistent with the developmental arrest model, the available data suggest that the determination of the anlage of the rudimentary Drosophila larval eye is homologous to the embryonic specification of the juvenile compound eye in directly developing insects while the Drosophila compound eye primordium is evolutionarily related to the yet little studied stem cell based postembryonic eye primordium of primitive insects.  相似文献   

16.
We have studied the division of postembryonic neuroblasts (Nbs) in the outer proliferation center (OPC) and central brain anlagen of Drosophila. We focused our attention on three aspects of these processes: the pattern of cellular division, the topological orientation of those divisions, and the expression of asymmetric cell fate determinants. Although larval Nbs are of embryonic origin, our results indicate that their properties appear to be modified during development. Several conclusions can be summarized: (i) In early larvae, Nbs divide symmetrically to give rise to two Nbs while in the late larval brain most Nbs divide asymmetrically to bud off an intermediate ganglion mother cell (GMC) that very rapidly divides into two ganglion cells (GC). (ii) Symmetric and asymmetric divisions of OPC Nbs show tangential and radial orientations, respectively. (iii) This change in the pattern of division correlates with the expression of inscuteable, which is apically localized only in asymmetric divisions. (iv) The spindle of asymmetrically dividing Nb is always oriented on an apical-basal axis. (v) Prospero does not colocalize with Miranda in the cortical crescent of mitotic Nbs. (vi) Prospero is transiently expressed in one of the two sibling GCs generated by the division of GMCs. The implications of these results on cell fate specification and differentiation of adult brain neurons are discussed.  相似文献   

17.
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to?orient the mitotic spindle during NB asymmetric division.  相似文献   

18.
19.
The Drosophila mushroom bodies (MBs), paired brain structures composed of vertical and medial lobes, achieve their final organization at metamorphosis. The alpha lobe absent (ala) mutant randomly lacks either the vertical lobes or two of the median lobes. We characterize the ala axonal phenotype at the single-cell level, and show that the ala mutation affects Drosophila ethanolamine (Etn) kinase activity and induces Etn accumulation. Etn kinase is overexpressed in almost all cancer cells. We demonstrate that this enzymatic activity is required in MB neuroblasts to allow a rapid rate of cell division at metamorphosis, linking Etn kinase activity with mitotic progression. Tight control of the pace of neuroblast division is therefore crucial for completion of the developmental program in the adult brain.  相似文献   

20.
Many adult tissues are maintained by resident stem cells that elevate their proliferation in response to injury. The regulatory mechanisms underlying regenerative proliferation are still poorly understood. Here we show that injury induces Hedgehog (Hh) signaling in enteroblasts (EBs) to promote intestinal stem cell (ISC) proliferation in Drosophila melanogaster adult midgut. Elevated Hh signaling by patched (ptc) mutations drove ISC proliferation noncell autonomously. Inhibition of Hh signaling in the ISC lineage compromised injury-induced ISC proliferation but had little if any effect on homeostatic proliferation. Hh signaling acted in EBs to regulate the production of Upd2, which activated the JAK–STAT pathway to promote ISC proliferation. Furthermore, we show that Hh signaling is stimulated by DSS through the JNK pathway and that inhibition of Hh signaling in EBs prevented DSS-stimulated ISC proliferation. Hence, our study uncovers a JNK–Hh–JAK–STAT signaling axis in the regulation of regenerative stem cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号