首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and X-ray crystal structures of the following bis(amidinate)-substituted boron halides are reported: 1,3-C6H4[C{N(SiMe3)}2BCl2]2 (3), 1,4-C6H4[C{N(SiMe3)}2BCl2]2 (4), 1,4-C6H4[C{N(SiMe3)}2B(Ph)Cl]2 (5), 1,4-C6H4[C{NCy}2BCl2]2 (6), and 1,4-C6H4[C{NCy}2B(Ph)Cl]2 (7). Compounds 3-5 were prepared by trimethylsilyl chloride elimination, while 6 and 7 were prepared via salt metathesis reactions of the appropriate dilithium bis(amidinates) with BCl3 or PhBCl2. The molecular structures of complexes 3, 5, and 6 were determined by single-crystal X-ray diffraction, along with that of the free bis(amidine) 1a.  相似文献   

2.
Four new binucleating ligands featuring a hydroxytrimethylene linker between two coordination sites (1,3-bis{N-[3-(dimethylamino)propyl]-N-methylamino}propan-2-ol, HL1; 1,3-bis{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL2; 1,3-bis[bis(2-methoxyethyl)amino]propan-2-ol, HL3; and 1-bis[(2-methoxyethyl)amino]-3-{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL4) were synthesized, along with the corresponding zinc complexes. The structures of three dinuclear zinc complexes ([Zn2L1(μ-CH3COO)2]BPh4 (1), [Zn2L3(μ-CH3COO)2]BPh4 (3), and [Zn2L4(μ-CH3COO)(CH3COO)(EtOH)]BPh4 (4)) and a tetranuclear zinc complex ({[Zn2L2(μ-CH3COO)]2(μ-OH)2}(BPh4)2 (2)) were revealed by X-ray crystallography. Hydrolysis of tris(p-nitrophenyl)phosphate (TNP) by these zinc complexes in an acetonitrile solution containing 5% Tris buffer (pH 8.0) at 30 °C was investigated spectrophotometrically and by 31P NMR. Although zinc complexes 1, 3, and 4 did not show hydrolysis activity, the tetranuclear zinc complex 2, containing μ-hydroxo bridges, was capable of hydrolyzing TNP. This suggests that the hydroxide moiety in the complex may have an important role in the hydrolysis reaction.  相似文献   

3.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

4.
The ether oxygen coordination to the zinc center in the complexes with dipicolylamine (DPA)-derived ligands, N-(2-methoxyethyl)-N,N-bis(2-pyridylmethyl)amine (L), N-(3-methoxypropyl)-N,N-bis(2-pyridylmethyl)amine (L′), and N-{3-(2-pyridylmethyloxy)propyl}-N,N-bis(2-pyridylmethyl)amine (LPy) has been discussed. Upon chelation of the oxygen atom, L forms a five-membered chelate ring with respect to the 2-aminoethyl ether moiety whereas L′ forms a six-membered chelate in 3-aminopropyl ether unit. This difference was highlighted by the crystal structures of ZnCl2 complexes, in which [Zn(L)Cl2] (1) exhibited ether oxygen coordination but [Zn(L′)Cl2] (2) had the ether oxygen non-coordinated. The terminal pyridyl group of LPy facilitates the ether oxygen atom coordination via a metal binding from the basal plane trans to the aliphatic nitrogen.  相似文献   

5.
Dilithiated 1,1-bis(trimethylsilylamino)ferrocene (1) reacts with aminoboron dihalides (2) X2B-N(R)R [X=Br, R=R=Et (2a); X=Cl, R=Me, R=CH2Ph (2b), X=Cl, R=Et, R=Ph (2c)] to give 2-amino-1,3,2-diazabora-[3]ferrocenophanes (3a-c) for the first time. The steric constraints exerted by the [3]ferrocenophane unit and the presence of the N-SiMe3 groups cause rather different B-N bonding situations in these tri(amino)boranes. The boron atom has the choice between three nitrogen atoms for BN(pp)π bonding: in the cases of 3a and 3b, it prefers the NEt2 and the N(Me)CH2Ph group, respectively, over the N-SiMe3 groups, whereas in 3c the N(Et)Ph group appears to be the weaker π-donor. This can be concluded from the X-ray structural analyses carried out for 3a and 3c, and from the low temperature 1H, 13C, and 29Si NMR spectra of 3a-3c.  相似文献   

6.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

7.
The reaction of imidoyl chlorides [V(NR)Cl3] (R = Ph 1, Tol 2, tBu 3) and calix[4]arene methyl ether H3Mecalix unexpectedly leads to the formation of the structurally characterized vanadium (IV) complex [VCl(Mecalix)] (4). Calix[4]arene methyl ether stabilized imido complexes of the type [V(NR)(Mecalix)] (R = Ph 7, Tol 8, tBu 9) were afforded from the reaction of [V(NR)Cl3] (R = Ph 1, Tol 2, tBu 3) and the tris(lithium) or tris(sodium) salt of the calix[4]arene ether. The lithium salt [{Li3(Mecalix)}2] (5) is a dimer in the solid state, in which two monomeric trianions are bridged by lithium cations. Imido complexes [M(NR)(Mecalix)] (M = Nb: R = tBu, 12, R = Tol 13, R = Mes 14, R = Dipp 15; M = Ta: R = tBu 16, R = Tol 17) (Tol = 4-C6H4Me, Mes = 2,6-C6H3Me2; Dipp = 2,6-C6H3iPr2) have been prepared from structurally characterized [NbCl2(Mecalix)] (10) and previously known [TaCl2(Mecalix)] (11) via reaction with two equivalents of the appropriately metallated (Li, K) primary amine. The molecular structures of 13 and 15 confirm the mononuclear nature of these complexes.  相似文献   

8.
The paper describes the reactivity of calix[4]arene dialkyl- or -silylethers H2R2calix, R=Me (1), Bz (2), or SiMe3 (3) (p-tert.butyl-calix[4]arene=H4calix), towards the iron(III) complex [FeCl(NSiMe3)2(thf)] 4. Bis(silylation) of H4calix was achieved using a mixture of NEt3 and Me3SiCl as silylating agent, which is probably the most convenient and cheapest way for the preparation of H2(Me3Si)2calix 3. [FeCl(N{SiMe3}2)2(thf)] 4 has been obtained from the reaction of [FeCl3] and commercially available K[N(SiMe3)2] in THF. The reactions of 4 with H2Me2calix and H2Bz2calix afford mononuclear iron(III) chloro compounds [FeCl(R2calix)] 5 (R=Me) and 6 (R=Bz). The usage of calix[4]arene silyl ether 3 leads to a dinuclear complex [Fe2({Me3Si}calix)2] 7, presumably under Me3SiCl cleavage of a mononuclear calixarene iron(III) chloro complex. The calix[4]arene ether stabilized iron(III) chloro complexes are susceptible to nucleophilic substitution reactions, as exemplified by the reaction of 5 with sodium azide yielding an azido complex [Fe(N3)(Me2calix)] 8. The molecular structures of 4, 5, 6, 7, and 8 in the solid state have been determined by X-ray diffraction.  相似文献   

9.
The glycosylation of 5-(3-chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole-3-thiol (1) and its 3-benzylsulfanyl and 3-methylsulfanyl derivatives with different glycosyl halides 2-4 has been studied in presence of base. The S-glycosides 5-7 were obtained in the presence of triethylamine, whereas the respective S,N4-bis(glycosyl) derivatives 8-10 were synthesized in the presence of potassium carbonate; the S,N2-bis(glycosyl) isomer 11 could also be isolated in the case of the galactosyl analog. Similarly, after protecting 1 as 3-benzyl(methyl)sulfanyl derivatives 12 or 13, the N4-glycosyl analogs 14-19 as well as minor amounts of S,N2-bis(galactosyl) isomers 20 and 21 were formed. The theoretical calculations using AM1 semiempirical methods agreed with the experimental results. Microwave irradiation (MWI) led to higher yields in much less time than the conventional methods, and no change in regioselectivity has been noticed.  相似文献   

10.
Three novel N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminopropane dimeric lanthanide complexes, namely, [{H2L}Sm(NO3)3]2·H2O (1), [{H2L}Gd(NO3)3]4·CH3OH (2), [{H2L}Lu(NO3)3]4·H2O (3) (H2L = N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminopropane) and three new N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminopropane 3d-Gd heterodinuclear complexes, namely, [{LCo}(CH3COO)(CH3COOH)Gd(NO3)2] (4), [{LNi(MeOH)2}Gd(NO3)3]·2MeOH (5) and [{(L)Zn(HNO3)}Gd(NO3)3]·NO3·H3O·MeOH (6) have been synthesized and isolated. X-ray crystallographical analysis reveals that complexes 1-3 are isomorphic with unique dimeric topology. Complexes 4-6 are of discrete 3d-4f dinuclear cores. Magnetic properties of complexes 2 and 4-6 are systematically investigated. Complexes 4 and 5 are ferromagnetic, while 2 and 6 are antiferromagnetic.  相似文献   

11.
The first chiral bis(pyridine) N-C(H)-N pincer ligand, (5S,7S)-1,3-bis(6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanquinolin-2-yl)benzene (HL) has been synthesized and characterized by a thorough 1H NMR analysis. Reaction of HL with K2[PtCl4] in acetic acid gives [Pt(L)Cl] (1), where L acts as a tridentate N-C-N pincer ligand. The analogous palladium(II) derivatives [Pd(L)Cl] (2), and [Pd(L)(OAc)] (3), were first prepared through a transmetalation reaction between Pd(OAc)2 and the organomercury compound [Hg(L)Cl] (4). The structures of compounds 1 (Pt) and 2 (Pd), as determined by X-ray diffraction, are reported and compared. Compound 2 can also be obtained from Na2[PdCl4] and HL in refluxing acetic acid, i.e., under the same conditions used for compound 1. Apparently, this is the first palladium pincer derivative of a 1,3-bis(pyridyl)benzene ligand synthesized by direct C-H activation.The neutral complexes 1-3 are catalysts of modest activity, but devoid of enantioselectivity in the Heck reaction between iodobenzene and methyl acrylate and in the aldol condensation of benzaldehyde with methyl isocyanoacetate.  相似文献   

12.
Three novel metal-organic frameworks, [Zn(btze)]n (1), [Zn(btze)(H2O)]n (2) and [Mn(btze)(H2O)4]n·(H2O)2 (3) [btze = 1,2-bis(tetrazol-5-yl) ethane anion], were synthesized and characterized by elemental analysis, IR spectroscopy, X-ray crystallography and thermogravimetric analysis. The crystal structures study reveal that 1 displays a 3D framework, 2 displays a 2D layer structure and 3 displays a 1D polymeric chain. The luminescence properties of 1-3 were investigated at room temperature in solid state.  相似文献   

13.
MoO2Cl2(L)2 [L = (R)-(+)-methyl-p-tolylsulfoxide (R-MeTolSO) (1), methyl-p-tolylsulfoxide (MeTolSO) (2), 2-benzenesulfinyl-1,1-diphenylethanol (BSDPE) (3), 1-benzenesulfinyl-2-methyl-2-propanol (BSMP) (4), benzenesulfinylmethyl 4-methylphenyl ketone (BSMMPK) (5)], and MoO2Cl2(L) [L = BSDPE (6), BSMP (7), BSMMPK (8), (S,S)-bis(p-tolylsulfinyl)methane (S,S-TolSOCH2SOTol) (9), bis(methylsulfinyl)methane (MeSOCH2SOMe) (10), bis(phenylsulfinyl)methane (PhSOCH2SOPh) (11)] have been synthesized by reacting a solution of MoO2Cl2(H2O)2 in diethyl ether with the corresponding ligand. The crystal and molecular structures of 1, 2, and 9 have been established by X-ray diffraction analysis. The ability of 1 and 9 as catalysts for the enantioselective reduction of sulfoxides to sulphides and the oxidation of sulphides to sulfoxides has been examined.  相似文献   

14.
Four new ligands containing a pyridine or thiazole group and one or more N-(diphenylphosphinomethyl)amine functions have been prepared and employed for the synthesis of Mo(0) and W(0) carbonyl and dinitrogen complexes. For comparison coordination of the literature-known ligand N,N-bis(diphenylphosphinomethyl)-methylamine (PNP, 1) to such systems has been investigated as well. Two new ligands are N,N-bis(diphenylphosphinomethyl)-2-aminopyridine (pyNP2, 2) and N,N′-bis(diphenylphosphinomethyl)-2,6-diaminopyridine (PpyP, 3). In a third new ligand, N-diphenylphosphinomethyl-2-aminothiazole (thiazNP, 4), the pyridine group is replaced by thiazol. Finally, the pentadentate ligand N,N,N′,N′-tetrakis(diphenylphosphinomethyl)-2,6-diaminopyridine (pyN2P4, 5) has been synthesized. Coordination of ligands 2, 3 and 4 to low-valent metal centers is investigated on the basis of the three molybdenum carbonyl complexes [Mo(CO)3(NCCH3)(pyNP2)] (6), [Mo(CO)4(PpyP)] (7) and [Mo(CO)4(thiazNP)] (8), respectively, all of which are structurally characterized. Moreover, employing ligands 1 and 2 the two dinitrogen complexes [W(N2)2(dppe)(PNP)] (9) and [Mo(N2)2(dppe)(pyNP2) (10), respectively, are prepared. Both systems are investigated by vibrational and NMR spectroscopy; in addition, complex 10 is structurally characterized.  相似文献   

15.
Novel upper-rim modified tetraphosphinocalix[4]arenes (5a-b) adopting 1,3-alternate conformation have been synthesized. Reaction of 5,11,17,23-tetrachloromethyl-25,26,27,28-tetrahydroxycalix[4]arene (1) with Ph2POEt gave 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrahydroxycalix[4]arene (2). Tetra-O-substitution of 2 with n-propyl iodide or benzyl bromide in the presence of K2CO3 carried out to afford 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrapropoxy-(3a) or -benzyloxycalix[4]arene (3b), whereas di-O-substituted calix[4]arene, 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4), was obtained exclusively when Na2CO3 was used as base. Reduction of 3a-b with PhSiHCl2 afforded 5,11,17,23-tetrakis(diphosphinomethyl)-25,26,27,28-tetrapropoxy-(5a) and -tetrabenzyloxycalix[4]arene (5b). 1H and 13C NMR analysis reveals that the phosphines (5a-b) and the tetra-O-substituted phosphine oxides (3a-b) adopt 1,3-alternate conformation, while the parent tetrahydroxy-(2) and the di-O-propylated phosphine oxide (4) adopt cone-conformation. The X-ray structure indicates that the calix[4]arene moieties in 4 a pinched-cone conformation in solid state. Complexation of the phosphine ligand (5a) with [RuCl2(p-cymene)]2 affords the tetranuclear complexes, [{RuCl2(p-cymene)}2 · 5a] (6), as 1,3-alternate conformer.  相似文献   

16.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

17.
The bulky phosphine ligands di-tert-butyl(1-naphthyl)phosphine (1) or di-tert-butyl(N-indolyl)phosphine (2) react at room temperature with [(μ-SMe2)PtMe2]2. Coordination of the phosphine and C-H bond activation at an sp2 carbon of the ligand with the release of methane takes place to form the PC cyclometalated products [(PC)PtMe(SMe2)] (3 or 4, respectively). The cyclometalated complexes 3 and 4 have both been characterized by X-ray crystallography. Complexes 3 and 4 were each observed to undergo intermolecular activation of arene C-H bonds. Upon thermolysis in benzene, complexes 3 and 4 react to eliminate methane and yield isolable platinum(II)-phenyl complexes.  相似文献   

18.
Treatment of [Os3(μ-H)2(CO)10] with the chiral diphosphines BINAP, tolBINAP [(R)-2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl], DIOP [(4R,5R)-(−)-O-isopropenylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] affords [Os3(μ-H)2(CO)8(μ-L)] (L = BINAP (1), tolBINAP (2), DIOP (4)) in high yield. The X-ray structures for 1, 2 and 4 are reported, and structural and spectroscopic comparisons are made between these clusters and [Os3(μ-H)2(CO)8(μ-L)] (L = dppm (5), dppe (6), dppp (7)) which were synthesised similarly. Compounds 5 to 7 were previously synthesised by hydrogenation of 1,2-[Os3(CO)10(μ-L)] but the route from [Os3(μ-H)2(CO)10] is preferable. The H-bridged Os?Os distances are similar in 1, 2 and 4 indicating that these species are formally unsaturated 46-electron clusters. The P?P distances vary from 4.24 to 4.30 Å in 1 and 2, respectively, to 4.53 Å in 4 and there are related changes in the angles associated with the ligand set around the H-bridged osmium atoms. Introduction of the diphosphine ligands completely suppresses the ability to add CO, to insert acetylene to form a μ-η12-vinyl compound, and to exchange hydride ligands with styrene-d8, which are reactions characteristic of [Os3(μ-H)2(CO)10]. Clusters 2 and 5-7 were also used to examine the potential of natural abundance 187Os NMR spectroscopy through techniques based on inverse detection by HMQC, HSQC and HMBC spectroscopy.  相似文献   

19.
Sodium P,P-diphenylphosphinothioate (2) was prepared by treatment of the free acid, Ph2P(S)OH (1), with sodium bis(trimethylsilyl)amide and isolated as its THF adduct. The zinc phosphonodithioate complex [Zn{S2P(OMe)C6H4OEt-p}2]2 (3) was obtained from ZnCl2 and the readily accessible sodium salt of the ligand. According to X-ray diffraction studies, both compounds form dimers in the solid state.  相似文献   

20.
Reaction of tBu2(Me3Si)C5H2Li with S2Cl2 leads to [tBu2(Me3Si)C5H2]2S2. This compound exists as a pair of diastereomers (1,2) with sulfur in an allylic position of the cyclopentadiene system. Each diastereomer exists as a racemate of RS,SR and RR,SS enantiomers, respectively. 1 rapidly, 2 slowly convert below room temperature to a pair of diastereomers (3,4) with sulfur in vinylic position. Again, each diastereomer exists as a racemate of RS,SR and RR,SS enantiomers. 3 and 4 are the stable constitutional isomers at ambient temperatures and do not interconvert. The structures of 2, 3 and 4 have been determined by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号