首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
3.
4.
5.
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3′ long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3′ long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3′-end of the mouse mammary tumor virus genome, but further deletions at the 5′- or 3′-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3′-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5′- and 3′-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.Mouse mammary tumor virus (MMTV)3 has multiple regulatory and accessory genes (1, 2). The known accessory genes specify a dUTPase (3), which is believed to be involved in retroviral replication in non-dividing cells (4), as well as superantigen (Sag). Sag is a transmembrane glycoprotein that is involved in the lymphocyte-mediated transmission of MMTV from maternal milk in the gut to susceptible epithelial cells in the mammary gland (5, 6). The Sag protein expressed by endogenous (germline) MMTV proviruses has been reported to provide susceptibility to infection by exogenous MMTVs or the bacterial pathogen, Vibrio cholerae (7). These results suggest a role for MMTV Sag in the host innate immune response.MMTV recently was shown to be a complex retrovirus (1). Complex retroviruses encode RNA-binding proteins that facilitate nuclear export of unspliced viral RNA by using a leucine-rich nuclear export sequence (8), which binds to chromosome region maintenance 1 (Crm1)(9), whereas simple retroviruses have a cis-acting constitutive transport element that directly interacts with components of the Tap/NXF1 pathway (10). Similar to other complex retroviruses, MMTV encodes a Rev-like protein, regulator of export/expression of MMTV mRNA (Rem) (1). Rem is translated from a doubly spliced mRNA into a 33-kDa protein that contains nuclear and nucleolar localization signals as well as a predicted RNA-binding motif and leucine-rich nuclear export sequence (1, 2). Our previous experiments indicated that Rem affects export of unspliced viral RNA, and a reporter vector that relies on luciferase expression from unspliced RNAs has increased activity in the presence of Rem (1). Sequences at the MMTV envelope-long terminal repeat (LTR) junction were required within the vector for Rem-induced expression, suggesting that the LTR contains all or part of the Rem-responsive element (RmRE). Very recently, Müllner et al. (11) identified a 490-nt region spanning the MMTV envelope-3′ LTR region, which was predicted to form a highly structured RNA element. This element confers Rem responsiveness on heterologous human immunodeficiency virus type 1 (HIV-1)-based plasmid constructs in transfection experiments.Experiments using other retroviral export proteins have demonstrated considerable variation in the size of the response elements. A minimal Rev-responsive element (RRE) in the human immunodeficiency virus type 1 (HIV-1) genomic RNA is 234 nt, the human T-cell leukemia virus Rex-responsive element is 205 nt (1214), whereas the Rec-responsive element (RcRE; also known as the K-RRE) of human endogenous retrovirus type K is 416 to 429 nt (15, 16). Most response elements are confined to the 3′-end of their respective retroviral genomes (either to the envelope or LTR regions) (14, 15), but 5′ Rev-response elements also have been identified (17). Studies indicate that the secondary structure is a critical factor for proper function of retroviral response elements (18), and that multiple stem-loops are required. Export proteins multimerize on these elements to allow activity (19).In the current study, we have used deletion mutations within a reporter vector based on the 3′-end of the MMTV genome to define a 476-nt element necessary for maximum Rem responsiveness. This element spans the envelope-LTR junction of the MMTV genome as previously reported (1). However, a secondary structure model generated using digestions of the RmRE by RNases V1, T1, and A as experimental constraints differs significantly from the published structure (11) and more closely resembles complex retroviral response elements. Transfection experiments indicated that the MMTV RmRE could function in both mouse and human cells, suggesting that conserved cellular proteins interact with Rem.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome.Replication-deficient human adenoviruses (Ad) have been widely investigated as ex vivo and in vivo gene delivery systems for human gene therapy. The ability of these vectors to mediate the efficient expression of candidate therapeutic or vaccine genes in a variety of cell types, including postmitotic cells, is considered an advantage over other gene transfer vectors (3, 28, 49). However, the successful application of currently available E1-defective Ad vectors in human gene therapy has been hampered by the fact that transgene expression is only transient in vivo (2, 15, 16, 33, 36, 46). This short-lived in vivo expression of the transgene has been explained, at least in part, by the induction in vivo of cytotoxic immune responses to cells infected with the Ad vector. Studies with rodent systems have suggested that cytotoxic T lymphocytes (CTLs) directed against virus antigens synthesized de novo in the transduced tissues play a major role in eliminating cells containing the E1-deleted viral genome (5658, 61). Consistent with the concept of cellular antiviral immunity, expression of transgenes is significantly extended in experimental rodent systems that are deficient in various components of the cellular immune system or that have been rendered immunocompromised by administration of pharmacological agents (2, 33, 37, 48, 60, 64).Based on the assumption that further reduction of viral antigen expression may lower the immune response and thus extend persistence of transgene expression, previous studies have investigated the consequences of deleting both E1 and an additional viral regulatory region, such as E2A or E4. The E2A region encodes a DNA binding protein (DBP) with specific affinity for single-stranded Ad DNA. The DNA binding function is essential for the initiation and elongation of viral DNA synthesis during the early phase of Ad infection. During the late phase of infection, DBP plays a central role in the activation of the major late promoter (MLP) (for a recent review, see reference 44). The E4 region, located at the right end of the viral genome, encodes several regulatory proteins with pleiotropic functions which are involved in the accumulation, splicing, and transport of early and late viral mRNAs, in DNA replication, and in virus particle assembly (reviewed in reference 44). The simultaneous deletion of E1 and E2A or of E1 and E4 should therefore further reduce the replication of the virus genome and the expression of early and late viral genes. Such multidefective vectors have been generated and tested in vitro and in vivo (9, 12, 17, 1921, 23, 24, 26, 34, 40, 52, 53, 59, 62, 63). Recombinant vectors with E1 deleted and carrying an E2A temperature-sensitive mutation (E2Ats) have been shown in vitro to express much smaller amounts of virus proteins, leading to extended transgene expression in cotton rats and mice (19, 20, 24, 59). To eliminate the risks of reversion of the E2Ats point mutation to a wild-type phenotype, improved vectors with both E1 and E2A deleted were subsequently generated in complementation cell lines coexpressing E1 and E2A genes (26, 40, 63). In vitro analysis of human cells infected by these viruses demonstrated that the double deletion completely abolished viral DNA replication and late protein synthesis (26). Similarly, E1/E4-deleted vectors have been generated in various in vitro complementation systems and tested in vitro and in vivo (9, 17, 23, 45, 52, 53, 62). These studies showed that deletion of both E1 and E4 did indeed reduce significantly the expression of early and late virus proteins (17, 23), leading to a decreased anti-Ad host immune response (23), reduced hepatotoxicity (17, 23, 52), and improved in vivo persistence of the transduced liver cells (17, 23, 52).Interpretation of these results is difficult, however, since all tested E1- and E1/E4-deleted vectors encoded the bacterial β-galactosidase (βgal) marker, whose strong immunogenicity is known to influence the in vivo persistence of Ad-transduced cells (32, 37). Moreover, the results described above are not consistent with the conclusions from other studies showing, in various immunocompetent mouse models, that cellular immunity to Ad antigens has no detectable impact on the persistence of the transduced cells (37, 40, 50, 51). Furthermore, in contrast to results of earlier studies (19, 20, 59), Fang et al. (21) demonstrated that injection of E1-deleted/E2Ats vectors into immunocompetent mice and hemophilia B dogs did not lead to an improvement of the persistence of transgene expression compared to that with isogenic E1-deleted vectors. Similarly, Morral et al. (40) did not observe any difference in persistence of transgene expression in mice injected with either vectors deleted in E1 only or vectors deleted in both E1 and E2A. Finally, the demonstration that some E4-encoded products can modulate transgene expression (1, 17, 36a) makes the evaluation of E1- and E1/E4-deleted vectors even more complex when persistence of transgene expression is used for direct comparison of the in vivo persistence of cells transduced by the two types of vectors.The precise influence of the host immune response to viral antigens on the in vivo persistence of the transduced cells, and hence the impact of further deletions in the virus genome, therefore still remains unclear. To investigate these questions, we generated a set of isogenic vectors with single deletions (AdE1°) and double deletions (AdE1°E2A° and AdE1°E4°) and their corresponding complementation cell lines and compared the biologies and immunogenicities of these vectors in vitro and in vivo. To eliminate any possible influence of transgene-encoded products on the interpretation of the in vivo results, we used E1-, E1/E2A-, and E1/E4-deleted vectors with no transgenes.  相似文献   

15.
The Friend spleen focus-forming virus (SFFV) env gene encodes a glycoprotein with apparent Mr of 55,000 that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. A retroviral vector that does not encode any Env glycoprotein was packaged into retroviral particles and was coinjected into mice in the presence of a nonpathogenic helper virus. Although most mice remained healthy, one mouse developed splenomegaly and polycythemia at 67 days; the virus from this mouse reproducibly caused the same symptoms in secondary recipients by 2 to 3 weeks postinfection. This disease, which was characterized by extramedullary erythropoietin-independent erythropoiesis in the spleens and livers, was also reproduced in long-term bone marrow cultures. Viruses from the diseased primary mouse and from secondary recipients converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives but had no effect on the interleukin-3-dependent parental BaF3 cells. Most of these factor-independent cell clones contained a major Env-related glycoprotein with an Mr of 60,000. During further in vivo passaging, a virus that encodes an Mr-55,000 glycoprotein became predominant. Sequence analysis indicated that the ultimate virus is a new SFFV that encodes a glycoprotein of 410 amino acids with the hallmark features of classical gp55s. Our results suggest that SFFV-related viruses can form in mice by recombination of retroviruses with genomic and helper virus sequences and that these novel viruses then evolve to become increasingly pathogenic.The independently isolated Friend and Rauscher erythroleukemia viruses (18, 48) are complexes of a replication competent murine leukemia virus (MuLV) and a replication-defective spleen focus-forming virus (SFFV) (39, 42, 47). The SFFVs encode Env glycoproteins (gp55) that are inefficiently processed to form larger cell surface derivatives (gp55p) (19). The gp55 binds to erythropoietin receptors (EpoR) to cause erythroblast proliferation and splenomegaly in susceptible mice. Evidence has suggested that the critical mitogenic interaction occurs exclusively on cell surfaces (7, 16).SFFVs are structurally closely related to mink cell focus-inducing viruses (MCFs) (2, 5, 10, 50), a class of replication-competent murine retroviruses that has a broad host range termed polytropic (15, 21). Although MCFs are not inherited as replication-competent intact proviruses, the mouse genome contains numerous dispersed polytropic env gene sequences (8, 17, 27). MCFs apparently readily form de novo by recombination when ecotropic host range MuLVs replicate in mice (14, 15, 26, 43). MCF env genes typically are hybrid recombinants that contain a 5′ polytropic-specific region and a 3′ ecotropic-specific portion (26). They encode a gPr90 Env glycoprotein that is cleaved by partial proteolysis to form the products gp70 surface (SU) glycoprotein plus p15E transmembrane (TM) protein (32, 39, 47). In addition, MCFs often differ from ecotropic MuLVs in their long terminal repeat (LTR) sequences (8, 20, 26, 28, 29, 45).Based on their sequences, SFFVs could have derived from MCFs by a 585-base deletion and by a single-base addition in the ecotropic-specific portion of the env gene (10). Evidence suggests that both the 585-bp deletion and the frameshift mutation probably contribute to SFFV pathogenesis (3, 49). Several pathogenic differences among SFFV strains have also been ascribed to amino acid sequence differences in the ecotropic-specific portion of the Env glycoproteins (9, 41).This report describes the origin and rapid stepwise evolution of a new SFFV. This new pathogenic virus initially formed in a mouse that had been injected with an ecotropic strain of MuLV in the presence of a retroviral vector that does not encode any Env glycoprotein. The mouse developed erythroleukemia, splenomegaly, and polycythemia after a long lag phase. At that time the spleen contained viruses with env genes that were able to activate EpoR. Serial passage of this initial virus isolate resulted in selection of a novel SFFV that encodes a gp55 glycoprotein of 410 amino acids. This experimental system provides a method for isolating new SFFVs and for mapping the stages in their genesis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号