首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
副粘病毒F蛋白的两段七肽重复序列(HR1和HR2)在病毒侵染细胞的过程中相互作用形成热稳定的富含α螺旋的异源二聚体,此结构的形成引起病毒囊膜与细胞膜的并置而最终导致膜融合的发生。腮腺炎病毒(Mumps virus, MuV)属于副粘病毒科,腮腺炎病毒属,可能利用与其他副粘病毒相似的侵染机制。本研究对MuV 融合蛋白的HR区进行了计算机程序预测,并利用大肠杆菌GST融合表达系统对MuV F蛋白HR1和HR2两段多肽进行了表达和纯化,通过GST pull_down 实验证实HR1和HR2多肽在体外能够相互作用,凝胶过滤层析证明HR1、HR2多肽能够形成多聚体,说明MuV F蛋白的HR区的相互作用可能是其发挥融合功能的关键因素。  相似文献   

2.
Q Yao  X Hu    R W Compans 《Journal of virology》1997,71(1):650-656
We previously observed that cell fusion caused by human parainfluenza virus type 2 or type 3 requires the expression of both the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins from the same virus type, indicating that a type-specific interaction between F and HN is needed for the induction of cell fusion. In the present study we have further investigated the fusion properties of F and HN proteins of parainfluenza virus type 1 (PI1), type 2 (PI2), and type 3 (PI3), Sendai virus (SN), and simian virus 5 (SV5) by expression of their glycoprotein genes in HeLa T4 cells using the vaccinia virus-T7 transient expression system. Consistent with previous results, cell fusion was observed in cells transfected with homotypic F/HN proteins; with one exception, coexpression of any combination of F and HN proteins from different viruses did not result in cell fusion. The only exception was found with the closely related PI1 HN and SN HN glycoproteins, either of which could interact with SN F to induce cell fusion upon coexpression as previously reported. By specific labeling and coprecipitation of proteins expressed on the cell surface, we observed that anti-PI2 HN antiserum coprecipitated PI2 F when the homotypic PI2 F and PI2 HN were coexpressed, but not the F proteins of other paramyxoviruses when heterotypic F genes were coexpressed with PI2 HN, suggesting that the homotypic F and HN proteins are physically associated with each other on cell surfaces. Furthermore, we observed that PI3 F was found to cocap with PI3 HN but not with PI2 HN, also indicating a specific association between the homotypic proteins. These results indicate that the homotypic F and HN glycoproteins are physically associated with each other on the cell surface and suggest that such association is crucial to cell fusion induced by paramyxoviruses.  相似文献   

3.
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.  相似文献   

4.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

5.
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein.  相似文献   

6.
The cell fusion activity of most paramyxoviruses requires coexpression of a fusion protein (F) and a hemagglutinin-neuraminidase protein (HN) which are derived from the same virus type. To define the domain of the HN protein which interacts with the F protein in a type-specific manner a series of chimeric HN proteins between two different paramyxoviruses, Sendai virus (SN) and human parainfluenza virus type 3 (PI3), was constructed and coexpressed with the SN-F protein by using the vaccinia virus T7 RNA polymerase transient-expression system. Quantitative assays were used to evaluate cell surface expression as well as fusion-promoting activities of the chimeric HN molecules. A chimeric HN protein [SN(140)] containing 140 N-terminal amino acids derived from SN-HN and the remainder (432 amino acids) derived from PI3-HN was found to promote cell fusion with the SN-F protein. In contrast, a second chimeric HN with 137 amino acids from SN-HN at the N terminus could not promote fusion with SN-F, even though the protein was expressed on the cell surface. A construct in which the PI3-HN cytoplasmic tail and transmembrane domain were substituted for those of SN in the SN(140) chimera still maintained the ability to promote cell fusion. These results indicate that a region including only 82 amino acids in the extracellular domain, adjacent to the transmembrane domain of the SN-HN protein, is important for interaction with the SN-F protein and promotion of cell fusion.  相似文献   

7.
Lou Z  Xu Y  Xiang K  Su N  Qin L  Li X  Gao GF  Bartlam M  Rao Z 《The FEBS journal》2006,273(19):4538-4547
The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.  相似文献   

8.
Schmitt PT  Ray G  Schmitt AP 《Journal of virology》2010,84(24):12810-12823
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.  相似文献   

9.
S Bagai  R A Lamb 《Journal of virology》1995,69(11):6712-6719
To compare the requirements for paramyxovirus-mediated cell fusion, the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of simian virus 5 (SV5), human parainfluenza virus 3 (HPIV-3), and Newcastle disease virus (NDV) were expressed individually or coexpressed in either homologous or heterologous combinations in CV-1 or HeLa-T4 cells, using the vaccinia virus-T7 polymerase transient expression system. The contribution of individual glycoproteins in virus-induced membrane fusion was examined by using a quantitative assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecyl rhodamine (R18) and a quantitative assay for content mixing based on the cytoplasmic activation of a reporter gene, beta-galactosidase. In these assays, expression of the individual F glycoproteins did not induce significant levels of cell fusion and no cell fusion was observed in experiments when cells individually expressing homologous F or HN proteins were mixed. However, coexpression of homologous F and HN glycoproteins resulted in extensive cell fusion. The kinetics of fusion were found to be very similar for all three paramyxoviruses studied. With NDV and HPIV-3, no cell fusion was detected when F proteins were coexpressed with heterologous HN proteins or influenza virus hemagglutinin (HA). In contrast, SV5 F protein exhibited a considerable degree of fusion activity when coexpressed with either NDV or HPIV-3 HN or with influenza virus HA, although the kinetics of fusion were two- to threefold higher when the homologous SV5 F and HN proteins were coexpressed. Thus, these data indicate that among the paramyxoviruses tested, SV5 has different requirements for cell fusion.  相似文献   

10.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

11.
A unique abundant protein, designated P by analogy to the putative polymerase proteins of other paramyxoviruses, was identified in purified Newcastle disease virus. Under nonreducing conditions the P proteins could be separated from other viral proteins on sodium dodecyl sulfate-polyacrylamide gels. The P proteins were isolated from detergent-solubilized virions as 53,000- to 55,000-dalton monomers and disulfide-linked trimers. Distinct forms of P having four different isoelectric points and two different electrophoretic mobilities were resolved by two-dimensional electrophoresis. Two forms of P were phosphorylated, as were the nucleocapsid protein and non-glycosylated membrane protein. In addition to disulfide-linked forms of P, dimers of the hemagglutinin-neuraminidase glycoprotein and two disulfide-linked versions of the fusion glycoprotein were identified. Several electrophoretic variants of the nucleocapsid protein that were probably created by intrachain disulfide bonding were also isolated from virions under nonreducing conditions. The locations of the newly identified proteins were determined by detergent-salt fractionation of virions and by surface-selective radioiodination of the viral envelope. The P proteins were associated with nucleocapsids and were not detected at the surface of virions. Both forms of the fusion glycoproteins were on the exterior of the viral envelope. Herein the properties of the P proteins are compared with similar proteins of rhabdoviruses and other paramyxoviruses, and a role for multiple forms of proteins in the genetic economy of newcastle disease virus is discussed.  相似文献   

12.
Some evidences have been found that virulency in paramyxoviruses depends on the sensitivity of the cleavage recognition site of the F glycoprotein to serine type proteases. In this report, the interaction energies between the active site of trypsin and the cleavage recognition sites in paramyxoviruses are calculated. Results show that van der Waals energy and electrostatic energy contribute to the sensitivity. The virulencies of some myxo- and retro-viruses are then predicted on the basis of the two calculated interaction energy values.  相似文献   

13.
副粘病毒F1蛋白胞外非保守区对其特异性膜融合的影响   总被引:2,自引:0,他引:2  
为了解融合蛋白F1分子的胞外非保守区在融合蛋白(F)与血凝素.神经氨酸酶(HN)的特异性膜融合中的作用,采用基因定点突变方法,在新城疫病毒(NDV)F1与人副流感病毒(hPIV)F1基因的胞外非保守区进行定点突变,创造酶切位点,得到分别含3个相同酶切位点的突变株NDV-M和hPIV-M。经检测,突变体的细胞融合功能与野毒株相同。然后用3个限制性内切酶分别从NDV-M与hPIV-M中切出两个片段NDVF-1、F-2及hPIVF-1、F-2。NDV-M和hPIV-M相互交换对应的F-1片段后进行基因重组,得到2个嵌合体(Chimera),即NDV-C1和hPIV-C1;同样方法交换F-2片段后又得到2个嵌合体NDV-C2和hPIV-C2。将各种嵌合体DNA与同源及异源HN基因共转染BHK21细胞后,在真核细胞中表达。Giemsa染色和指示基因法检测细胞融合功能,荧光强度分析(FACS)检测F蛋白的表达效率。结果表明,突变体:NDV-M和hPIV-M的细胞融合功能与野毒株相同,可用于构建嵌合体。NDV-1C和NDV—C2分别与NDV HN共表达后,融合功能达到野毒株的76.34%和96.2%,与hPIV HN共表达后均无细胞融合发生;hPIV-C1和hPIV—C2分别与hPIV HN共表达后,融合功能达到野毒株的65.82%和93.78%,与NDV HN共表达后无细胞融合发生。FACS分析表明,突变体及所有嵌合体蛋白F的表达效率与野毒株相比均没有明显变化。实验结果说明在F1蛋白的胞外非保守区中,NDV F-1和hPIV F-1这两个片段对于NDV和hPIV的特异性膜融合具有重要作用;而NDV F-2和hPIV F-2这两个片段对于NDV和hPIV的膜融合来讲,则特异性较低。  相似文献   

14.
Corey EA  Iorio RM 《Journal of virology》2007,81(18):9900-9910
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.  相似文献   

15.
Henipavirus is a new genus of Paramyxoviridae that uses protein-based receptors (ephrinB2 and ephrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including the recent elucidation of structures of Nipah virus (NiV) and Hendra virus (HeV) G glycoproteins bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion could differ mechanistically from paramyxoviruses that use glycan-based receptors.  相似文献   

16.
For many paramyxoviruses, including Newcastle disease virus (NDV), syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins. Because a potential interaction in paramyxovirus-infected cells has never been demonstrated, such as interaction was explored by using coimmunoprecipitation and cross-linking. Both HN and F proteins could be precipitated with heterologous antisera after a 5-min radioactive pulse as well as after a 2-h chase in nonradioactive medium, but at low levels. Chemical cross-linking increased detection of complexes containing HN and F proteins at the cell surface. After cross-linking, intermediate- as well as high-molecular-weight species containing both proteins were precipitated with monospecific antisera. Precipitation of proteins with anti-HN after cross-linking resulted in the detection of complexes which electrophresed in the stacker region of the gel, from 160 to 300 kDa, at 150 kDa, and at 74 kDa. Precipitates obtained with anti-F after cross-linking contained species which migrated in the stacker region of the gel, between 160 and 300 kDa, at 120 kDa, and at 66 kDa. The three to four discrete complexes ranging in size from 160 to 300 kDa contained both HN and F proteins when precipitated with either HN or F antisera. That cross-linking of complexes containing both HN and F proteins was not simply a function of overexpression of viral glycoproteins at the cell surface was addressed by demonstrating cross-linking at early time points postinfection, when levels of viral surface glycoproteins are low. Use of cells infected with an avirulent strain of NDV showed that chemically cross-linked HN and F proteins were precipitated independent of cleavage of F0. Furthermore, under conditions that maximized HN protein binding to its receptor, there was no change in the percentages of HN and F0 proteins precipitated with heterologous antisera, but a decrease in F1 protein precipitated was observed upon attachment. These data argue that the HN and F proteins interact in the rough endoplasmic reticulum. Upon attachment of the HN protein to its receptor, the HN protein undergoes a conformational change which causes a conformational change in the associated F protein, releasing the hydrophobic fusion peptide into the target membrane and initiating fusion.  相似文献   

17.
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.  相似文献   

18.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.  相似文献   

19.
The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses.  相似文献   

20.
Hendra and Nipah viruses: different and dangerous   总被引:6,自引:0,他引:6  
Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号