首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

The inhibition of α-glucosidase is used as a key clinical approach to treat type 2 diabetes mellitus and thus, we assessed the inhibitory effect of α-ketoglutaric acid (AKG) on α-glucosidase with both an enzyme kinetic assay and computational simulations. AKG bound to the active site and interacted with several key residues, including ASP68, PHE157, PHE177, PHE311, ARG312, TYR313, ASN412, ILE434 and ARG439, as detected by protein–ligand docking and molecular dynamics simulations. Subsequently, we confirmed the action of AKG on α-glucosidase as mixed-type inhibition with reversible and rapid binding. The relevant kinetic parameter IC50 was measured (IC50 = 1.738?±?0.041?mM), and the dissociation constant was determined (Ki Slope = 0.46?±?0.04?mM). Regarding the relationship between structure and activity, a high AKG concentration induced the slight modulation of the shape of the active site, as monitored by hydrophobic exposure. This tertiary conformational change was linked to AKG inhibition and mostly involved regional changes in the active site. Our study provides insight into the functional role of AKG due to its structural property of a hydroxyphenyl ring that interacts with the active site. We suggest that similar hydroxyphenyl ring-containing compounds targeting key residues in the active site might be potential α-glucosidase inhibitors. Abbreviations AKG alpha-ketoglutaric acid

pNPG 4-nitrophenyl-α-d-glucopyranoside

ANS 1-anilinonaphthalene-8-sulfonate

MD molecular dynamics.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Natural α-glucosidase inhibitors (aGIs) are of great interest as an efficacious and safe therapy for type 2 diabetes, which is an ongoing global health issue. The aim of this study is to utilize shrimp head powder (SHP), an abundant and low-cost material, for the biosynthesis, isolation, and identification of active antidiabetic compounds. SHP was efficiently converted to aGIs via Paenibacillus sp. TKU042 fermentation. Fermented SHP (fSHP) by this strain possesses high pH stability, and stronger yeast α-glucosidase inhibitory activity (92%) than that of acarbose (60%). aGI productivity increased more than 2-fold after optimization (from 225 U/mL to 560 U/mL). Further bioactivity-guided isolation of two major active compounds were identified as nicotinic acid and adenine. Notably, these inhibitors were non-sugar-based moiety aGIs, which is newly isolated and identified from fSHP in this study. In the tests of specific enzyme inhibitory activity, adenine showed highly specific inhibition against yeast α-glucosidase (IC50 = 22 μg/mL); nicotinic acid demonstrated good effect on rat α-glucosidase (IC50 = 70 μg/mL); while acarbose possessed efficient effect on bacteria, rice, and rat α-glucosidases (IC50 = 0.03–108 μg/mL). The current results suggest that it is cost-effective to produce potent aGIs from SHP via Paenibacillus conversion, and these active constituents may be useful in type 2 diabetes management.  相似文献   

3.
Glycosidases play an important role in a wide range of physiological and pathological conditions, and have become potential targets for the discovery and development of agents useful for the treatment of diseases such as diabetes, cancer, influenza, and even AIDS. In this study, several benzimidazole derivatives were prepared from o-phenylenediamine and aromatic and heteroaromatic carboxaldehydes in very good yields, using PdCl2(CH3CN)2 as the most efficient catalyst. Synthesized compounds were assayed for their activity on yeast and rat intestinal α-glucosidase inhibition and cytotoxic activity against colon carcinoma cell line HT-29. Compound 3e exhibited 95.6% and 75.3% inhibition of yeast and rat intestinal α-glucosidase enzyme, while showing 74.8% cytotoxic activity against the HT-29 cell line at primary screening concentrations of 2.1?mM for yeast and rat intestinal α-glucosidase enzyme and 0.2?mM for cytotoxic activity against the HT-29 cell line, respectively. Compound 3c displayed 76% and 34.4% inhibition of yeast and rat intestinal α-glucosidase enzyme, and 80.4% cytotoxic activity against the HT-29 cell line at similar primary screening concentrations. The IC50 value for the most potent intestinal α-glucosidase inhibitor compound 3e was found to be 99.4?μM. The IC50 values for the most active cytotoxic compounds 3c and 3e were 82?μM and 98.8?μM, respectively. Both compounds displayed significant antihyperglycemic activity in starch-induced postprandial hyperglycemia in rats. This is the first report assigning yeast and rat intestinal α-glucosidase enzyme inhibition, cytotoxic activity against the HT-29 cell line, and antihyperglycemic activity to benzimidazole compounds 3c and 3e.  相似文献   

4.
Inhibiting the activity of α-glucosidase and glycosylation of protein is an important way to treat diabetes mellitus and its complications. In this study, we investigated the anti-α-glucosidase activity, anti-glycation potential and structure of proanthocyanidins from fruit pulp of Clausena lansium (Lour.) Skeels. C. lansium fruit pulp proanthocyanidins showed a remarkable inhibition against α-glucosidase activity with IC50 vaule of 0.26 ± 0.01 μg/mL in a competitive manner, and quenched the fluorescence of α-glucosidase by forming proanthocyanidin-α-glucosidase complex. Furthermore, compared to positive agent aminoguanidine (AG), the proanthocyanidins were the more significant inhibitors of non-enzymatic glycation by strongly inhibiting the formation of α-dicarbonyl compounds and advanced glycation end products. In addition, the structure of the proanthocyanidins was characterized in detail. These compounds were mainly composed of prodelphinidins, and their gallates. The main extender units, gallocatechin epigallocatechin and their gallates, were critical factor of the strong anti-α-glucosidase and anti-glycation activity. Therefore, this study authenticated a efficient α-glucosidase inhibitors and antiglycation agents, which would contribute to the development of anti-diabetic drug.  相似文献   

5.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

6.
In continuation of the screening of South African seaweeds to identify potential candidates for the development of pharmaceutically active functional foods, we investigated the inhibitory effects of a crude 80 % methanol extract, solvent fractions and isolated compounds from the kelp Macrocystis angustifolia against enzymes involved in type 2 diabetes and dementia. Repeated column fractionation of the ethyl acetate fraction of the crude extract of M. angustifolia afforded two phenol derivatives identified by spectroscopic analyses (1D and 2D NMR): 4-(2-hydroxyethyl)phenol (tyrosol) (1) and 4-(1,2-dihydroxyethyl)phenol (2). These compounds were isolated from a marine alga for the first time. The ethyl acetate (IC50?=?14.08?±?1.21 μg mL?1) and butanol (IC50?=?77.94?±?11.69 μg mL?1) fractions exhibited potent inhibition against α-glucosidase and acetylcholinesterase (AChE) enzymes, respectively. Tyrosol (1) and its derivative, 4-(1,2-dihydroxyethyl)phenol (2), showed potent inhibition against both α-glucosidase and AChE enzymes. Based on in silico evaluation, these two compounds are anticipated to possess sufficient oral bioavailability in accordance to the Lipinski Rule of Five without any toxicity risk. Natural α-glucosidase and AChE inhibitors from M. angustifolia offer a novel approach to control type 2 diabetes and dementia.  相似文献   

7.
《Mycoscience》2020,61(1):16-21
Bioactive compounds of endophytic fungus Trichoderma polyalthiae were extracted from culture broth media. The crude extracts showed strong antimicrobial activity against human pathogens. Biologically active compounds were isolated and purified by chromatographic methods. The structures of the pure compounds were elucidated by spectroscopic methods. They were identified as Violaceol I and Violaceol II. These compounds were detected as secondary metabolites produced by this genus for the first time. Violaceol I and II had a broad spectrum of antimicrobial activity against human pathogens, including Gram-positive bacteria (Staphylococcus saprophyticus, Staphylococcus aureus, Methicillin-Resistant S. aureus, Bacillus subtilis, Bacillus cereus) and Gram-negative bacteria (Salmonella typhimurium, Shigella sonnei) and Candida albicans. Violaceol I exhibited Minimal Inhibitory Concentration (MIC) values (<9.765–156.25 μg/mL) that were higher than Violaceol II (<9.765–312.5 μg/mL). Additionally, the MIC value of the phenol violaceol from this taxon was lower than the previous reports.  相似文献   

8.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

9.
The pathogenicity of Botrytis cinerea has been found to correlate positively with the β-glucosidase activity. In this report, the relationship between the induction of β-glucosidase and the components of host plant tissues was studied by the use of tissue fractions and cellulose-related compounds.

The most active enzyme induced by the crude fiber fraction and Avicel was β-glucosidase, among the cell wall degrading enzymes tested. The β-glucosidase was very inducible in the strains with strong pathogenicity, and intensively degraded the fiber fraction made from apple fruit tissues. The same degradation of the cell wall fraction was demonstrated with the purified enzyme.  相似文献   

10.
Adenosma bracteosum and Vitex negundo are natural sources of methoxylated flavonoids. Little is known about the α-glucosidase inhibition of multi-methoxylated flavonoid derivatives. Eighteen natural flavonoids were isolated from A. bracteosum and V. negundo. Seven halogenated derivatives were synthesized. Their chemical structures were elucidated by extensive NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. All compounds were evaluated for their α-glucosidase inhibition. Most compounds showed good activity with IC50 values ranging from 16.7 to 421.8 μM. 6,8-Dibromocatechin was the most active compound with an IC50 value of 16.7 μM. A molecular docking study was conducted, indicating that those compounds are potent α-glucosidase inhibitors.  相似文献   

11.
Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1–20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.  相似文献   

12.
Inhibition of α-glucosidase and α-amylase delays the digestion of starch and disaccharides to absorbable monosaccharides, resulting in a reduction of postprandial hyperglycemia. Finding effective mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. We investigated the inhibitory activity of cinnamic acid derivatives against rat intestinal α-glucosidase and porcine pancreatic α-amylase in vitro. Among 11 cinnamic acid derivatives, caffeic acid, ferulic acid, and isoferulic acid were the most potent inhibitors against intestinal maltase with IC50 values of 0.74?±?0.01, 0.79?±?0.04, and 0.76?±?0.03?mM, respectively, whereas ferulic acid (IC50?=?0.45?±?0.01?mM) and isoferulic acid (IC50?=?0.45?±?0.01?mM) were effective intestinal sucrase inhibitors. However, all cinnamic acid derivatives were found to be inactive in pancreatic α-amylase inhibition. Kinetic analysis revealed that intestinal maltase was inhibited by caffeic acid, ferulic acid, and isoferulic acid in a mixed-inhibition manner. In addition, ferulic acid and isoferulic acid inhibited intestinal sucrase in a mixed type manner, whereas caffeic acid was a non-competitive inhibitor. The combination of isoferulic acid and acarbose showed an additive inhibition on intestinal sucrase. This study could provide a new insight into naturally occurring intestinal α-glucosidase inhibitors that could be useful for treatment of diabetes and its complications.  相似文献   

13.
α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme’s activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure–activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG.  相似文献   

14.
Three new β-resorcylic acid derivatives, compounds 1–3, along with six known analogues (49) were isolated from an endophytic fungus Lasiodiplodia sp. ZJ-HQ1 derived from medicinal plant Acanthus ilicifolius. Their structures were elucidated by 1D and 2D NMR spectroscopic analysis, high resolution mass spectrometric (HREIMS) data, and X-ray crystallography. The absolute configurations of compounds 1 and 2 were determined by the modified Mosher’s method. Compounds 1–7 showed more potent inhibitory effects against α-glucosidase activity than the clinical α-glucosidase inhibitor acarbose.  相似文献   

15.
The inhibition of α-glucosidase activity is a prospective approach to attenuate postprandial hyperglycemia in the treatment of type 2 diabetes mellitus (T2DM). Herein, the inhibition of α-glucosidase by three compounds T1 – T3 of Akebia trifoliata stem, namely hederagenin ( T1 ), 3-epiakebonoic acid ( T2 ), and arjunolic acid ( T3 ) were investigated using enzyme kinetics and molecular docking analysis. The three triterpenoids exhibited excellent inhibitory activities against α-glucosidase. T1 – T3 showed the strongest inhibition with IC50 values of 42.1±5.4, 19.6±3.2, and 11.2±2.3 μM, respectively, compared to the acarbose positive control (IC50=106.3±8.2). Enzyme inhibition kinetics showed that triterpenoids T1 – T3 demonstrated competitive, mixed, and noncompetitive-type inhibition against α-glucosidase, respectively. The inhibition constant (Ki) values were 21.21, 7.70, and 3.18 μM, respectively. Docking analysis determined that the interaction of ligands T1 – T3 and α-glucosidase was mainly forced by hydrogen bonds and hydrophobic interactions, which could result in improved binding to the active site of the target enzyme. The insulin resistant (IR)-HepG2 cell model used in this study (HepG2 cells exposed to 10−7 M insulin for 24 h) and glucose uptake assays showed that compounds T1 – T3 had no cytotoxicity with concentrations ranging from 6.25 to 25 μM and displayed significant stimulation of glucose uptake in IR-HepG2 cells. Thus, triterpenoids T1 – T3 showed dual therapeutic effects of α-glucosidase inhibition and glucose uptake stimulation and could be used as potential medicinal resources to investigate new antidiabetic agents for the prevention or treatment of diabetes.  相似文献   

16.
Here we synthesized four novel indole conduritol derivatives 1–4 for the first time in the literature and probed their biological activities with the α and β-glucosidases. The compounds showed quite effective glucosidase inhibitory action. IC50 values of the compounds were compared with the known glucosidase inhibitor acarbose and it was determined that newly synthesized indole conduritols had more powerful effect against β-glucosidase in addition to exhibiting moderate influence against α-glucosidase. Our molecules thus constitute an important starting point for the design and exploitation of novel glucosidase inhibitors since glucosidase inhibitors have widespread applications in the treatment of diabetes, viral infections, lysosomal storage diseases and cancers.  相似文献   

17.
肉桂抑制α-葡萄糖苷酶活性成分研究   总被引:1,自引:0,他引:1  
为寻找肉桂中具有抑制α-葡萄糖苷酶活性的化学成分,采用高效液相色谱结合体外抑制α-葡萄糖苷酶活性筛选模型的方法,进行活性成分的跟踪分离,并对活性化合物进行酶抑制动力学研究.结果显示,肉桂石油醚提取物(IC50=350.37 μg/mL)的活性明显高于阳性对照阿卡波糖(IC50=1028.99 μg/mL),从中分离出2个活性成分,分别鉴定为桂皮醛( IC50 =277.89 μg/mL)和肉桂酸(IC50=286.22 μg/mL).酶抑制动力学结果表明它们对α-葡萄糖苷酶的抑制类型均为非竞争性抑制,Ki值分别为178.07 μg/mL和229.43 μg/mL.  相似文献   

18.
Abstract

Members of the sortase enzyme super family decorate the surfaces of Bacillus anthracis cell wall with proteins that play key roles in microbial pathogenesis and its biofilm formation. Bacillus anthracis Sortase-A (Ba-SrtA) is a potential target for new therapeutics as it is required for B. anthracis survival and replication within macrophages. An understanding of the binding site pocket and substrate recognition mechanism by SrtA enzymes may serve to be beneficial in the rational development of sortase inhibitors. Here, the LPXTG signal peptide-based competitive inhibitors are screened against the Ba-SrtA and compounds with reasonable inhibition, specificity, and mechanisms of inactivation of SrtA have been covered. The screened compounds are experimentally validated against the phylogenetically similar Gram-positive pathogen B. cereus. In situ microscopic visualizations suggest that these screened compounds showed the microbial and biofilm inhibitory activity against B. cereus. It facilitates the further development of these molecules into useful anti-infective agents to treat infections caused by B. anthracis and other Gram-positive pathogens. These results provide insight into basic design principles for generating new clinically relevant lead molecules. It also provides an alternative strategy where a screened ligand molecule can be used in combination to battle increasingly against the Gram-positive pathogens.  相似文献   

19.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Endophytic fungi from Nyctanthes arbor-tristis were isolated and evaluated for their antimicrobial activity. A total of 19 endophytic fungi were isolated from 400 segments of healthy leaf and stem tissues of N. arbor-tristis. Eighteen endophytic fungi were obtained from leaf, while only ten from stem. Alternaria alternata had the highest colonization frequency (15.0%) in leaf, whereas Cladosporium cladosporioides ranked first in stem with a colonization frequency of 12%. The diversity and species richness were found higher in leaf tissues than in stem. The similarity indices between leaf and stem were 0.473 for Jaccard’s and 0.642 for the Sorenson index, respectively. Of 16, 12 (75%) endophytic fungal extracts showed antibacterial activity against either one or more pathogenic bacteria. The endophytic Nigrospora oryzae showed maximum inhibition against Shigella sp. and Pseudomonas aeruginosa. The leaf endophytes Colletotrichum dematium and Chaetomium globosum exhibited a broad range of anibacterial activity and were active against Shigella flexnii, Shigella boydii, Salmonella enteritidis, Salmonella paratyphi, and P. aeruginosa. Nine out of 16 (56.25%) endophytic fungi exhibited antifungal activity to one or more fungal pathogens. Colletotrichum dematium inhibited 55.87% of the radial growth of the phytopathogen Curvularia lunata. The antimicrobial activity of these endophytic microorganisms could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号