首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).  相似文献   

2.
3.
4.
DNA-protein interactions involving enhancer and promoter sequences within the U3 regions of several avian retroviral long terminal repeats (LTRs) were studied by DNase I footprinting. The rat CCAAT/enhancer-binding protein, C/EBP, bound to all four viral LTRs examined. The Rous sarcoma virus binding site corresponded closely to the 5' limit of the LTR enhancer; nucleotides -225 to -188 were protected as a pair of adjacent binding domains. The Fujinami sarcoma virus LTR bound C/EBP at a single site at nucleotides -213 to -195. C/EBP also bound to the promoter region of the enhancerless Rous-associated virus-0 LTR at nucleotides -77 to -57. The avian myeloblastosis virus LTR bound C/EBP at three sites: nucleotides -262 to -246, -154 to -134, and -55 to -39. We have previously observed binding of C/EBP to an enhancer in the gag gene of avian retroviruses. A heat-treated nuclear extract from chicken liver bound to all of the same retroviral sequences as did C/EBP. Alignment of the avian retroviral binding sequences with the published binding sites for C/EBP in two CCAAT boxes and in the simian virus 40, polyoma, and murine sarcoma virus enhancers suggested TTGNNGCTAATG as a consensus sequence for binding of C/EBP. When two bases of this consensus sequence were altered by site-specific mutagenesis of the Rous sarcoma virus LTR, binding of the heat-stable chicken protein was eliminated.  相似文献   

5.
Avian leukosis virus subgroup J (ALV-J), an exogenous avian retrovirus, is thought to have evolved by recombination with the highly identical env gene of the endogenous avian retrovirus EAV-HP. Embryonic expression of EAV-HP env has been suggested to be associated with the induction of immunological tolerance, a feature observed in a significant proportion of meat-type chickens infected with ALV-J. In support of this hypothesis, we demonstrate that EAV-HP loci, some of which could be associated with tolerance, are still segregating within the chicken population.  相似文献   

6.
Avian leukosis virus subgroup J (ALV-J), the most recent member of the avian retroviruses, is predominantly associated with myeloid leukosis in meat-type chickens. We have previously demonstrated that the acutely transforming virus strain 966, isolated from an ALV-J-induced tumor, transformed peripheral blood monocyte and bone marrow cells in vitro and induced rapid-onset tumors, suggesting transduction of oncogenes (L. N. Payne, A. M. Gillespie, and K. Howes, Avian Dis. 37:438-450, 1993). In order to understand the molecular basis for the rapid transformation and tumor induction, we have determined the complete genomic structure of the provirus of the 966 strain. The sequence of the 966 provirus clone revealed that its genome is closely related to that of HPRS-103 but is defective, with the entire pol and parts of the gag and env genes replaced by a 1,491-bp sequence representing exons 2 and 3 of the c-myc gene. LSTC-IAH30, a stable cell line derived from turkey monocyte cultures transformed by the 966 strain of ALV-J, expressed a 72-kDa Gag-Myc fusion protein. The identification of the myc gene in 966 virus as well as in several other ALV-J-induced tumors suggested that the induction of myeloid tumors by this new subgroup of ALV occurs through mechanisms involving the activation of the c-myc oncogene.  相似文献   

7.
鸡的J亚群白血病病毒的分离及部分序列比较   总被引:50,自引:3,他引:47  
通过接种鸡胚成纤维细胞、聚合酶链式反应(PCR)技术及特异性单抗的间接荧光抗体反应(IFA),从某大型肉用型种鸡场的疑似J亚群白血病的病鸡中,以及25个临床健康的商品代肉鸡群的2群中,分离鉴定出J亚群禽白血病病毒(ALV-J)。在用抗ALV-J gp85单克隆抗体JE9的IFA中,来自病鸡群的两株病毒SD9901和SD9902呈强阳性反应,来自临床健康肉鸡群的YZ9901和YZ9902株呈弱阳性反  相似文献   

8.
摘要:以国内某3家SPF鸡场的SPF鸡胚成纤维细胞提取的基因组DNA为模板,参照已发表的序列,设计合成了4对检测内源性白血病病毒引物,分别检测gag基因、pol基因、env基因和LTR片段,结果显示4者检出阳性率很高(gag,29/46;pol,27/46;env,24/46;LTR,31/46).设计合成了8对引物,选取4片段检测均为阳性的样品之一,经PCR成功扩增出了8段连续的、相互部分重叠的目的DNA片段,分别连接入T载体进行克隆测序.用DNAstar软件对测序结果进行拼接,从一个鸡胚得到了内源性白血病病毒前病毒全基因组序列.比较分析发现,该序列env基因与已知的E亚群内源性病毒代表株env基因的核苷酸序列同源性在98.5%以上,全基因组序列同源性在99.1%以上,而与其他亚群代表株同源性相对较低,env基因同源性仅为56.3%~91.5%.  相似文献   

9.
Rous-associated virus 0 (RAV-0), an endogenous chicken virus, does not cause disease when inoculated into susceptible domestic chickens. An infectious unintegrated circular RAV-0 DNA was molecularly cloned, and the sequence of the long terminal repeat (LTR) and adjacent segments was determined. The sequence of the LTR was found to be very similar to that of replication-defective endogenous virus EV-1. Like the EV-1 LTR, the RAV-0 LTR is smaller (278 base pairs instead of 330) than the LTRs of the oncogenic members of the avian sarcoma virus-avian leukosis virus group. There is, however, significant homology. The most striking differences are in the U(3) region of the LTR, and in this region there are a series of small segments present in the oncogenic viruses which are absent in RAV-0. These differences in the U(3) region of the LTR could account for the differences in the oncogenic potential of RAV-0 and the avian leukosis viruses. I also compared the regions adjacent to the RAV-0 LTR with the available avian sarcoma virus sequences. A segment of approximately 200 bases to the right of the LTR (toward gag) is almost identical in RAV-0 and the Prague C strain of Rous sarcoma virus. The segment of RAV-0 which lies between the end of the env gene and U(3) is approximately 190 bases in length. Essentially this entire segment is present between env and src in the Schmidt-Ruppin A strain of Rous sarcoma virus. Most of this segment is also present between env and src in Prague C; however, in Prague C there is an apparent deletion of 40 bases in the region adjacent to env. In Schmidt-Ruppin A, but not in Prague C, about half of this segment is also present between src and the LTR. This arrangement has implications for the mechanism by which src was acquired. The region which encoded the gp37 portion of env appears to be very similar in RAV-0 and the Rous sarcoma viruses. However, differences at the very end of env imply that the carboxy termini of RAV-0, Schmidt-Ruppin A, and Prague C gp37s are significantly different. The implications of these observations are considered.  相似文献   

10.
11.
12.
A new subgroup of avian leukosis virus (ALV) that includes a unique env gene, designated J, was identified recently in England. Sequence analysis of prototype English isolate HPRS-103 revealed several other unique genetic characteristics of this strain and provided information that it arose by recombination between exogenous and endogenous virus sequences. In the past several years, ALV J type viruses (ALV-J) have been isolated from broiler breeder flocks in the United States. We were interested in determining the relationship between the U.S. and English isolates of ALV-J. Based on sequence data from two independently derived U.S. field isolates, we conclude that the U.S. and English isolates of ALV-J derive from a common ancestor and are not the result of independent recombination events.  相似文献   

13.
Molecularly cloned proviral DNA of avian oncogenic retrovirus CMII was isolated by screening a genomic library of a CMII-transformed quail cell line with a myc-specific probe. On a 10.4-kilobase EcoRI fragment, the cloned DNA contained 4.4 kilobases of CMII proviral sequences extending from the 5' long terminal repeat to the EcoRI site within the partial (delta) complement of the env gene. The gene order of CMII proviral DNA is 5'-delta gag-v-myc-delta pol-delta env-3'. All three structural genes are partially deleted: the gag gene at the 3' end, the env gene at the 5' end, and the pol gene at both ends. The delta gag (0.83 kilobases)-v-myc (1.50 kilobases) sequences encode the p90gag-myc transforming protein of CMII. In comparison with the p110gag-myc protein of acute leukemia virus MC29, p90gag-myc lacks amino acids corresponding to additional 516 bases of gag sequences and 12 bases of 5' v-myc sequences present in the MC29 genome. Nucleotide sequence analysis of CMII proviral DNA at the delta gag-v-myc and the v-myc-delta pol junctions revealed significant homologies between avian retroviral structural genes and the cellular oncogene c-myc precisely at the positions corresponding to the gene junctions in CMII. Furthermore, the delta gag-v-myc junction in CMII corresponds to sequence elements in gag and C-myc that are possible splicing signals. The data suggest that transduction of cellular oncogenes may involve RNA splicing and recombination with homologous sequences on retroviral vectors. Different sequence elements of both the retroviral vectors and the c-myc gene recombined during genesis of highly oncogenic retroviruses CMII, MC29, or MH2.  相似文献   

14.
15.
We recently reported the identification of sequences in the chicken genome that show over 95% identity to the novel envelope gene of the subgroup J avian leukosis virus (S. J. Benson, B. L. Ruis, A. M. Fadly, and K. F. Conklin, J. Virol. 72:10157-10164, 1998). Based on the fact that the endogenous subgroup J-related env genes were associated with long terminal repeats (LTRs), we concluded that these LTR-env sequences defined a new family of avian endogenous viruses that we designated the ev/J family. In this report, we have further characterized the content and expression of the ev/J proviruses. The data obtained indicate that there are between 6 and 11 copies of ev/J proviruses in all chicken cells examined and that these proviruses fall into six classes. Of the 18 proviruses examined, all share a high degree of sequence identity and all contain an internal deletion that removes all of the pol gene and various amounts of gag and env gene sequences. Sequencing of the gag genes, LTRs, and untranslated regions of several ev/J proviruses revealed a high level of identity between isolates, indicating that they have not undergone significant sequence variation since their introduction into the avian germ line. Although the ev/J gag gene showed a relatively weak relationship (46% identity and 61% similarity at the amino acid level) to that of the avian leukosis-sarcoma virus family, it retains several sequences of demonstrated importance for virus assembly, budding, and/or infectivity. Finally, evidence was obtained that at least some members of the ev/J family are expressed and, if translated, could encode Gag- and Env-related polypeptides.  相似文献   

16.
Integrated retroviral genomes are flanked by direct repeats of sequences derived from the termini of the viral RNA genome. These sequences are designated long terminal repeats (LTRs). We have determined and analyzed the nucleotide sequence of the LTRs from several exogenous and endogenous avian retroviruses. These LTRs possess several structural similarities with eukaryotic and prokaryotic transposable elements: 1) inverted complementary repeats at the termini, 2) deletions of sequences adjacent to the LTR, 3) small duplications of host sequences flanking the integrated provirus, and 4) sequence homologies with transposable and other genetic elements. These observations suggest that LTRs function in the integration and perhaps transposition of retrovirus genomes. Evidence exists for the presence of a strong promoter sequence within the LTR. The retroviral LTR also contains a "Hogness box" up-stream of the capping site and a poly(A) signal. These features suggest an additional role for the LTR in the regulation of gene expression.  相似文献   

17.
18.
19.
We detected sequences related to the avian retrovirus Rous sarcoma virus within the genome of the Japanese quail, a species previously considered to be free of endogenous avian leukosis virus elements. Using low-stringency conditions of hybridization, we screened a quail genomic library for clones containing retrovirus-related information. Of five clones so selected, one, lambda Q48, contained sequence information related to the gag, pol, and env genes of Rous sarcoma virus arranged in a contiguous fashion and spanning a distance of approximately 5.8 kilobases. This organization is consistent with the presence of an endogenous retroviral element within the Japanese quail genome. Use of this element as a high-stringency probe on Southern blots of genomic digests of several quail DNA demonstrated hybridization to a series of high-molecular-weight bands. By slot hybridization to quail DNA with a cloned probe, it was deduced that there were approximately 300 copies per diploid cell. In addition, the quail element also hybridized at low stringency to the DNA of the White Leghorn chicken and at high stringency to the DNAs of several species of jungle fowl and both true and ruffed pheasants. Limited nucleotide sequencing analysis of lambda Q48 revealed homologies of 65, 52, and 46% compared with the sequence of Rous sarcoma virus strain Prague C for the endonuclease domain of pol, the pol-env junction, and the 3'-terminal region of env, respectively. Comparisons at the amino acid level were also significant, thus confirming the retrovirus relatedness of the cloned quail element.  相似文献   

20.
To assess the status of avian leukosis virus subgroup J (ALV-J) in wild ducks in China, we examined samples from 528 wild ducks, representing 17 species, which were collected in China over the past 3 years. Virus isolation and PCR showed that 7 ALV-J strains were isolated from wild ducks. The env genes and the 3′UTRs from these isolates were cloned and sequenced. The env genes of all 7 wild duck isolates were significantly different from those in the prototype strain HPRS-103, American strains, broiler ALV-J isolates and Chinese local chicken isolates, but showed close homology with those found in some layer chicken ALV-J isolates and belonged to the same group. The 3′UTRs of 7 ALV-J wild ducks isolates showed close homology with the prototype strain HPRS-103 and no obvious deletion was found in the 3′UTR except for a 1 bp deletion in the E element that introduced a binding site for c-Ets-1. Our study demonstrated the presence of ALV-J in wild ducks and investigated the molecular characterization of ALV-J in wild ducks isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号