首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
2.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

3.
Summary The mesothelial cells obtained from human omental adipose tissue showed a typical cobblestone monolayer and reacted strongly with keratin, but did not have Von Willebrand factor. Ultrastructurally these cells revealed the existence of desmosome-like cell junctions as well as intracellular canaliculi, tubular structures surrounded by microvilli, and tonofilament-like filaments. The mesothelial cells grew much faster in the medium containing epidermal growth factor, actively took up acetylated-low density lipoprotein into their cytoplasm, and released angiotensin-converting enzyme. They also released urokinase-type plasminogen activator, but only half as much as do human umbilical vein endothelial cells; release of tissue-type plasminogen activator was not observed. Inasmuch as the mesothelial cells also released plasminogen activator inhibitor-1, as do human umbilical vein endothelial cells, we could not detect u-PA activity in culture medium. u-PA may play a role in the protection against adhesion among visceral organs. These observations indicate that cultured human mesothelial cells have characteristics closely related to those found in human endothelial cells.  相似文献   

4.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is an integral membrane Kunitz-type serine proteinase inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA). HGFA is a serum proteinase that is critically involved in the activation of hepatocyte growth factor/scatter factor (HGF/SF) in injured tissue. Previous studies have shown that HAI-1 is expressed on the basolateral surface of various epithelial cells. In this study, we analyzed the expression of HAI-1 in human endothelial cells. Immunohistochemically, HAI-1 protein was observed in the endothelial cells of capillaries, venules and lymph vessels. On the other hand, arterial endothelial cells were poorly stained for HAI-1. Mesothelial cells on the serous surface were also positively immunostained. The endothelial expression of HAI-1 was also examined in cultured human endothelial cells of various origins, such as umbilical vein, microvessels and aorta. Notably, in accordance with the results of immunohistochemistry, HAI-1 mRNA and protein levels were high in the endothelial cells derived from umbilical vein and were hardly detectable in those derived from aorta. A low but distinct level of HAI-1 expression was also observed in endothelial cells from microvessels. As these HAI-1-positive endothelial cells also expressed MET tyrosine kinase, the specific receptor of HGF/SF, it is conceivable that HAI-1 might have an important regulatory role in the HGF/SF-MET signaling axis of endothelial cells, which could be involved in the process of angiogenesis.  相似文献   

5.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

6.
Serum-free conditioned media and cell extracts from cultured human umbilical vein endothelial cells were analyzed for plasminogen activator by SDS-polyacrylamide gel electrophoresis and enzymography on fibrin-indicator gels. Active bands of free and complexed tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) were identified by the incorporation of specific antibodies against, respectively, t-PA or u-PA in the indicator gel. The endothelial cells predominantly released a high-molecular-weight t-PA (95000–135000). This t-PA form was converted to Mr-72000 t-PA by 1.5 M NH4OH/39 mM SDS. A component with high affinity for both t-PA and u-PA could be demonstrated in serum-free conditioned medium and endothelial cell extract. The complex between this component and Mr-72000 t-PA comigrated with high-molecular-weight t-PA. From the increase in Mr of t-PA or u-PA upon complex formation, the Mr of the endothelial cell component was estimated to be 50000–70000. The reaction between t-PA or u-PA and the plasminogen activator-binding component was blocked by 5 mM p-aminobenzamidine, while the complexes, once formed, could be cleaved by 1.5 M NH4OH/39 mM SDS. These observations indicated that the active center of plasminogen activator was involed in the complex formation. It was further noted that serum-free conditioned medium of endothelial cell extract inhibited plasminogen activator activity when assayed by the fibrin-plate method. Evidence is provided that the plasminogen activator-binding component was different from a number of the known plasma serine proteinase inhibitors, the placenta inhibitor and the fibroblast surface protein, proteinase-nexin. We conclude that cultured endothelial cells produce a rapid inhibitor of u-PA and t-PA as well as a t-PA-inhibitor complex.  相似文献   

7.
Basic fibroblast growth factor, a potent angiogenesis inducer, stimulates urokinase (uPA) production by vascular endothelial cells. In both basic fibroblast growth factor-stimulated and -nonstimulated bovine capillary endothelial and human umbilical vein endothelial cells single-chain uPA binding is mediated by a membrane protein with a Mr of 42,000. Exposure of bovine capillary or endothelial human umbilical vein endothelial cells to pmolar concentrations of basic fibroblast growth factor results in a dose-dependent, protein synthesis-dependent increase in the number of membrane receptors for uPA (19,500-187,000) and in a parallel decrease in their affinity (KD = 0.144-0.790 nM). With both cells, single-chain uPA binding is competed by synthetic peptides whose sequence corresponds to the receptor-binding sequence in the NH2-terminal domain of uPA. Exposure of bovine capillary endothelial cells to transforming growth factor beta 1, which inhibits uPA production and upregulates type 1 plasminogen activator inhibitor, the major endothelial cell plasminogen activator inhibitor, has no effect on uPA receptor levels. These results show that basic fibroblast growth factor, besides stimulating uPA production by vascular endothelial cells, also increases the production of receptors, which modulates their capacity to focalize this enzyme on the cell surface. This effect may be important in the degradative processes that occur during angiogenesis.  相似文献   

8.
Two dimensional (2D) co‐cultures of human bone marrow stromal cells (HBMSCs) and human umbilical vein endothelial cells (HUVECs) stimulate osteoblastic differentiation of HBMSCs, induce the formation of self‐assembled network and cell interactions between the two cell types involving many vascular molecules. Because of their strong activities on angiogenesis and tissue remodeling, urokinase plasminogen activator (uPA), plasminogen activator inhibitor‐1 (PAI‐1), matrix metalloproteinase‐2 (MMP‐2) as well tissue inhibitors of matrix metalloproteinase‐2 (TIMP‐2) were investigated in this 2D co‐culture model. We found that the expression of uPA, MMP‐2 in the co‐cultured cells was significantly higher than those in mono‐cultured cells. In opposite, PAI‐1, expressed only by HUVECs is not regulated in the co‐culture. Inhibition assays confirm that uPA played a critical role in the formation of self‐assembled network as neutralization of uPA disturbed this network. In the same context, inhibition of MMP‐2 prevented the formation of self‐assembled network, while the inhibition of uPA abolished the over expression and the activity of MMP‐2. This upregulation could initiate the uPA expression and proteolysis processes through the MMP‐2 activity, and may contribute to endothelial cell migration and the formation of this self‐assembled network observed in these 2D co‐cultured cells. J. Cell. Biochem. 114: 650–657, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Pathological levels of homocysteine induce a metalloproteinase-dependent degradation of the elastic structures in arterial wall. This elastolytic process is preferentially localized toward the internal elastic laminae and in the first layers of the media, suggesting endothelium could participate in extracellular matrix degradation induced by homocysteine. Therefore, we studied the effects of homocysteine on proteolytic potential of endothelial cells. Human umbilical vein endothelial cells were cultured with concentrations of homocysteine matching human physiological (10 microM) and pathological (50, 100, and 250 microM) plasma homocysteine levels. Pathological levels of homocysteine increased the secretion of elastolytic metalloproteinase-2 and -9, but not of metalloproteinase-3 and -7. Homocysteine also increased the expression of human tissue kallikrein, a potential activator of matrix metalloproteinase-2 and -9, while the expression of urokinase plasminogen activator was not altered. These results suggest vascular endothelial cells could participate in the subendothelial degradation of the arterial elastic structures occurring in hyperhomocysteinemia.  相似文献   

10.
Binding of Ulex europaeus lectin to microvessels was used to isolate endothelial cells from cycling human endometrium. Cultured human endometrial endothelial cells (HEECs) exhibited endothelial cell-specific characteristics such as tube formation on a basement membrane matrix and sequestration of acetylated low-density lipoprotein. Markers for potentially contaminating epithelial, stromal, smooth muscle, and bone marrow-derived cells were not detected in the HEEC cultures. Basal and proinflammatory-stimulated immunostaining profiles for endothelial cell-specific adhesion markers, as exemplified by Von Willebrand's factor and E-selectin, were similar for cultured HEECs and human umbilical venous cord endothelial cells (HUVECs). However, HUVECs expressed several extracellular matrix proteins that were absent from cultured HEECs. In the latter, the protein kinase C agonist phorbol myristate acetate transiently enhanced tissue factor (TF) mRNA levels and elicited a more prolonged elevation in TF protein levels, but did not affect plasminogen activator inhibitor-1 (PAI-1) mRNA and protein levels. Inappropriate expression of TF, which initiates hemostasis by generating thrombin, and of PAI-1, which regulates hemostasis by acting as the primary inhibitor of fibrinolysis, can each lead to thrombosis. The differential regulation of TF and PAI-1 expression revealed in the current study emphasizes the importance of using HEECs to evaluate mechanisms regulating the hemostatic/thrombotic balance in human endometrium.  相似文献   

11.
The ability of tissue plasminogen activator (tPA) to induce human umbilical vein endothelial (HUVE) cell migration was studied using an in vitro, serum-free wound assay system. At pharmacological doses, tPA stimulated HUVE cell migration dose-dependently. Treatment of cells with epsilon amino caproic acid (EACA) to detach cell-surface and extracellular matrix bound plasminogen, which could lead to plasmin generation, resulted in increased HUVEcell migration on stimulation with tPA.Plasminogen activator inhibitor-1 (PAI-1), a natural plasminogen activator inhibitor, abolished tPA-induced HUVEcell migration. These results demonstrate for the first time that tPA is capable of stimulating endothelial cell migration in wound assays and this effect is susceptible to PAI-1 inhibition.  相似文献   

12.
People with diabetes experience morbidity and mortality from unregulated microvascular remodeling, which may be linked to hyperglycemia. Elevated glucose leads to extracellular matrix collagen glycation, which delays endothelial capillary-like tube formation in vitro. Glucose also increases endothelial cell fibroblast growth factor-2 (FGF-2) release and extracellular matrix storage, which should increase tube formation. In this study, we determined if FGF-2 could restore plasminogen system activity and angiogenic function in endothelial cells on glycated collagen. Human umbilical vein endothelial cells cultured on native or glycated collagen substrates were stimulated with FGF-2. Plasminogen system activity, cell migration, and capillary-like tube formation were measured, along with plasminogen system protein and mRNA levels. Glycated collagen decreased endothelial cell plasminogen system activity, cell migration, and tube length. FGF-2 did not restore plasminogen system activity or tube formation in cells on glycated collagen, despite decreasing plasminogen activator inhibitor-1 (PAI-1) protein level. We now show that PAI-1 binds to glycated collagen, which may localize PAI-1 to the extracellular matrix. These data suggest that FGF-2 may not restore angiogenic functions in endothelial cells on glycated collagen due to PAI-1 bound to glycated collagen.  相似文献   

13.
The specific binding sites for tissue-type plasminogen activator (t-PA) were investigated in human umbilical vein endothelial cells. After adding 125I-t-PA (M.W. 70 kDa) to endothelial cells in suspension culture, the ligand was recovered from the cell extract after disuccinimidyl suberate treatment as a high molecular complex with M.W. of 90 kDa on SDS-PAGE. The complex reacted to only anti-t-PA IgG but not to anti-PAI-1 IgG immunoblot analysis, indicating a t-PA specific binding protein. 125I-t-PA ligand blotting of the cell extract revealed that the binding protein had M.W. 20 kDa. The binding of 125I-t-PA to endothelial cells was reduced in the presence of an excess amount of t-PA, plasminogen and 6-aminohexanoic acid, indicating that the binding sites were also recognized by plasminogen, and that t-PA and plasminogen were bound via lysine binding sites in the molecule. These findings suggest that human endothelial cells have specific t-PA binding molecules which may be expressed on the cell surface as t-PA receptors.  相似文献   

14.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

15.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

16.
The synthesis of plasminogen activators and inhibitors in endothelial cells is highly regulated by hormones, drugs and growth factors. The present study evaluates the effect of retinoic acid on the synthesis of tissue-type plasminogen activator (t-PA) and of plasminogen activator inhibitor-1 (PAI-1) by cultured human umbilical vein endothelial cells (HUVEC). Retinoic acid produced a time- and concentration-dependent increase in the secretion of t-PA-related antigen but not of PAI-1 related antigen into the culture medium. A maximal sevenfold increase of t-PA antigen after 24 h was observed with 10 microM and a half-maximal increase with 0.1 microM retinoic acid. Retinoic acid induced a time-dependent increase of the t-PA mRNA, with a maximum at 8 h and returning to normal at 24 h. The protein kinase inhibitor H7 decreased the t-PA antigen induced by both retinoic acid and phorbol 12-myristate 13-acetate. These results suggest that treatment of HUVEC with retinoic acid increases t-PA production by a pathway which, at some level, involves protein kinases. Thus, retinoic acid induces t-PA synthesis in the absence of altered PAI-1 synthesis, which may enhance the fibrinolytic potential of the endothelium.  相似文献   

17.
Tissue plasminogen activator-inhibitor complexes were purified from the conditioned medium of human umbilical vein endothelial cells by affinity chromatography followed by gel filtration. It was found that a single complex was isolated which can exist in two distinct interconvertible conformations. These may be separated by electrophoresis into a form with a 105,000 apparent molecular weight and a form with an 88,000 apparent molecular weight. The particular conformation which predominates may be altered by changing the pH at which preparations are incubated or by including dithiothreitol in incubation buffers. Plasminogen activator enzymatic activity may be partially recovered from purified complexes by incubation in the presence of fibrin. Incubation in 1.5 M NH4OH results in the dissociation of the complex into two major polypeptides of 67 and 40 kilodaltons (kDa). The 40-kDa protein was isolated by gel filtration high-pressure liquid chromatography. N-Terminal amino acid analysis of this protein revealed three distinct sequences. Two of these were nearly identical and matched the N-terminal sequence recently reported for the native plasminogen activator inhibitor from endothelial cells. The third sequence exactly matched an internal portion of the same protein. The results suggest that the internal sequence is located at the site where the inhibitor is cleaved by tissue plasminogen activator.  相似文献   

18.
Magnesium supplementation has been reported to prevent cardiovascular diseases through the decrease of plasma lipids and to improve endothelial function in patients with coronary artery disease. In the present work, we evaluated whether high magnesium concentrations can directly affect the function of cultured endothelial cells, which play a crucial role in maintaining the functional integrity of the vascular wall. We cultured human umbilical vein endothelial cells for various times in media containing different concentration of magnesium (range 2 to 10 mM) and compared them to the corresponding controls (1 mM Mg). High Mg concentrations stimulated endothelial proliferation, enhanced the motogenic response to angiogenic factors and attenuated the response to lipopolysaccharide (LPS). In addition, we demonstrate that high concentrations of magnesium did not modulate the levels of plasminogen activator inhibitor-1, but enhanced the synthesis of nitric oxide, in part through the up-regulation of endothelial nitric oxide synthase. Our results demonstrate a direct role of magnesium in maintaining endothelial function. We therefore anticipate that magnesium may have a protective effect against atherosclerosis and could play a role in promoting the growth of collateral vessels in chronic ischemia. Moreover, because it induces the synthesis of nitric oxide, this cation could be a helpful tool in hypertension as well as in preventing thrombosis.  相似文献   

19.
20.
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号