首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fibroblast growth factor-2 did not restore plasminogen system activity in endothelial cells on glycated collagen
Authors:Justin George Mathew  Alisa Morss Clyne
Institution:Drexel University, Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia 19104, PA, USA
Abstract:People with diabetes experience morbidity and mortality from unregulated microvascular remodeling, which may be linked to hyperglycemia. Elevated glucose leads to extracellular matrix collagen glycation, which delays endothelial capillary-like tube formation in vitro. Glucose also increases endothelial cell fibroblast growth factor-2 (FGF-2) release and extracellular matrix storage, which should increase tube formation. In this study, we determined if FGF-2 could restore plasminogen system activity and angiogenic function in endothelial cells on glycated collagen. Human umbilical vein endothelial cells cultured on native or glycated collagen substrates were stimulated with FGF-2. Plasminogen system activity, cell migration, and capillary-like tube formation were measured, along with plasminogen system protein and mRNA levels. Glycated collagen decreased endothelial cell plasminogen system activity, cell migration, and tube length. FGF-2 did not restore plasminogen system activity or tube formation in cells on glycated collagen, despite decreasing plasminogen activator inhibitor-1 (PAI-1) protein level. We now show that PAI-1 binds to glycated collagen, which may localize PAI-1 to the extracellular matrix. These data suggest that FGF-2 may not restore angiogenic functions in endothelial cells on glycated collagen due to PAI-1 bound to glycated collagen.
Keywords:Endothelial cells  Glycated collagen  Plasminogen system  Fibroblast growth factor-2  Tube formation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号