首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kisspeptins, coded by the KiSS-1 gene, regulate aspects of the reproductive axis by stimulating GnRH release via the G protein coupled receptor, GPR54. Recent reports show that KiSS/GPR54 may be key mediators in photoperiod-controlled reproduction in seasonal breeders, and that KiSS-1/GPR54 are expressed in the hypothalamus, ovaries, placenta, and pancreas. This study examined the expression of KiSS-1/GPR54 mRNA and protein in ovaries of Siberian hamsters (Phodopus sungorus). Ovaries from cycling hamsters were collected during proestrus (P), estrus (E), diestrus I (DI), and diestrus II (DII). To examine KiSS-1/GPR54 during stimulated recrudescence, additional hamsters were maintained either in long day (LD 16L:8D, control) or short day (SD 8L:16D) for 14 weeks and then transferred to LD for 0-8 weeks. Staining of KiSS-1/GPR54 protein was detected by immunohistochemistry in steroidogenic cells of pre-antral and antral follicles, and corpora lutea. Immunostaining peaked in P and E, but decreased in the diestrus stages (P < 0.05). In recrudescing ovaries, KiSS-1/GPR54 immunostaining was low after 14 weeks of SD exposure (post-transfer [PT] week 0), and increased during the early weeks of recrudescence. Expression of KiSS-1/GPR54 mRNA was low with short day exposure, but increased during recrudescence and was higher at PT week 8 as compared to PT weeks 0 and 2 (P < 0.05). The elevated KiSS-1/GPR54 expression during P and E suggests a potential role in ovulation in Siberian hamsters. Transient increases in KiSS-1/GPR54 expression following LD stimulation are also suggestive of possible involvement in ovulation and/or restoration of ovarian function.  相似文献   

2.
Kim W  Jessen HM  Auger AP  Terasawa E 《Peptides》2009,30(1):103-110
The G-protein coupled receptor, GPR54, and its ligand, kisspeptin-54 (a KiSS-1 derived peptide) have been reported to be important players in control of LHRH-1 release. However, the role of the GPR54 signaling in primate reproductive senescence is still unclear. In the present study we investigated whether KiSS-1, GPR54, and LHRH-1 mRNA in the brain change after menopause in female rhesus monkeys using quantitative real-time PCR. Results indicate that KiSS-1, GPR54, and LHRH-1 mRNA levels in the medial basal hypothalamus (MBH) in postmenopausal females (28.3+/-1.1 years of age, n=5) were all significantly higher than that in eugonadal adult females (14.7+/-2.1 years of age, n=9), whereas KiSS-1, GPR54, and LHRH-1 mRNA levels in the preoptic area (POA) did not have any significant changes between the two age groups. To further determine the potential contribution by the absence of ovarian steroids, we compared the changes in KiSS-1, GPR54, and LHRH-1 mRNA levels in young adult ovarian intact vs. young ovariectomized females. Results indicate that KiSS-1 and LHRH-1 mRNA levels in the MBH, not POA, in ovariectomized females were significantly higher than those in ovarian intact females, whereas GPR54 mRNA levels in ovariectomized females had a tendency to be elevated in the MBH, although the values were not quite statistically significant. Collectively, in the primate the reduction in the negative feedback control by ovarian steroids appears to be responsible for the aging changes in kisspeptin-GPR54 signaling and the elevated state of the LHRH-1 neuronal system.  相似文献   

3.
Preeclampsia (PE) is a heterogeneous syndrome affecting 2% to 8% of all pregnancies and is the world’s leading cause of fetal and maternal morbidity and mortality. In many cases of PE, shallow trophoblast invasion results in inappropriate maternal spiral artery remodeling and impaired placental function. Multiple genes have been implicated in trophoblast invasion, among which are KiSS-1 and GPR54. The gene product of KiSS-1 is metastin, which is a ligand for the receptor GPR54. Both metastin and GPR54 are expressed in the placenta of normal pregnancy and have been implicated in modulating trophoblast invasion through inhibiting migration of trophoblast cells. We have previously reported that the expression level of KiSS-1 was higher in trophoblasts from women with preeclampsia as compared to normal controls. Here, using quantitative RT-PCR, Western blot analysis and immunohistochemistry, we extend our analysis to demonstrate that elevated KiSS-1 expression occurs only in early-onset preeclampsia (ePE) and not late-onset preeclampsia (lPE). However, no difference in the expression levels of GPR54 is observed between ePE, lPE, and normal controls. Further, we show that KiSS-1 expression is also increased in placenta of intrauterine death and birth asphyxia in comparison to normal newborns of ePE and lPE. Our findings suggest that aberrant upregulation of KiSS-1 expression may contribute to the underlying mechanism of ePE as well as birth asphyxia.  相似文献   

4.
The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.  相似文献   

5.
Kisspeptins, a family of peptide products derived from the KiSS-1 gene, activate their cognate receptor GPR54 in various target tissues to exert disparate functions, including inhibition of tumor metastasis and control of reproductive function. In contrast to the plethora of studies that have analyzed in recent years the regulatory functions of the KiSS-1/GPR54 system, only a limited number of reports have been primarily focused on delineating the intracellular signaling pathways involved. Nevertheless, there is solid evidence indicating that kisspeptin can activate a wide variety of signals via GPR54. These include typical G-protein (Galphaq/11)-coupled cascades, such as activation of phospholipase C (PLC), and subsequent accumulation of inositol-(1,4,5)-triphosphate (IP3), intracellular Ca(2+) mobilization, and activation of protein kinase C. However, kisspeptin also activates pathways related to mitogen activated protein kinases (MAPK), especially ERK1/2, and p38 and phosphatidylinositol-3-kinase (PI3K)/Akt. Additionally, the kisspeptin/GPR54 pair can also influence cell signaling by interacting with other receptors, such as chemokine receptor CXCR4, and GnRH receptor. Kisspeptin can also affect other signaling events, like expression of matrix metalloproteinase 9 (via NFkappaB), and that of calcineurin. The information gathered hitherto clearly indicates that activation of a specific set of interconnected signals is selectively triggered by kisspeptin via GPR54 in a cell type-dependent manner to precisely regulate functions as distinct as hormone release and cell migration. In this scenario, it will be important to decipher kisspeptin/GPR54 signaling mechanisms in reproductive and non-reproductive tissues by studying additional models, especially on natural kisspeptin targets expressing endogenous GPR54.  相似文献   

6.
Arai AC 《Peptides》2009,30(1):16-25
The granule cells of the dentate gyrus form the input stage of the hippocampal trisynaptic circuit and their function is strongly influenced by peptidergic systems. GPR54 is highly and discretely expressed in these cells. We have found that activation of GPR54 with kisspeptin-10 causes a rapid and large increase in the amplitude of excitatory synaptic responses in granule cells, without changing membrane properties. The effect was suppressed by the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA, and analysis of miniature EPSCs revealed an increase in mean amplitude but not event frequency, indicating that GPR54 and the mechanisms for enhancing EPSCs are postsynaptic, possibly involving changes in AMPA receptor number or conductance. The kisspeptin-induced synaptic potentiation was abolished by inhibitors of ERK1/2, tyrosine kinase, and CaMKII. RT-PCR experiments showed that KiSS-1 is expressed in the dentate gyrus. KiSS-1 mRNA was significantly increased by seizure activity in rats and when neuronal activity in organotypic hippocampal slice cultures was enhanced by kainate or picrotoxin, while mRNA for GPR54 remained essentially unchanged. These results suggest that kisspeptin may be locally synthesized and act as an autocrine factor. In separate experiments, hippocampal KiSS-1 mRNA in male rats was increased after gonadectomy. In summary, kisspeptin is a novel endogenous factor which is dynamically regulated by neuronal activity and which, in marked distinction from other neuropeptides, increases synaptic transmission in dentate granule cells through signaling cascades possibly linked to the MAP kinase system. This novel peptide system may play a role in cognition and in the pathogenesis of epilepsy.  相似文献   

7.
Natural peptides displaying agonist activity on the orphan G protein-coupled receptor GPR54 were isolated from human placenta. These 54-, 14,- and 13-amino acid peptides, with a common RF-amide C terminus, derive from the product of KiSS-1, a metastasis suppressor gene for melanoma cells, and were therefore designated kisspeptins. They bound with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster ovary K1 cells and stimulated PIP(2) hydrolysis, Ca(2+) mobilization, arachidonic acid release, ERK1/2 and p38 MAP kinase phosphorylation, and stress fiber formation but inhibited cell proliferation. Human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function. Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis.  相似文献   

8.
It is well established that reproductive function is gated by the state of energy reserves of the organism; conditions of metabolic stress and energy insufficiency being frequently coupled to disturbed reproductive maturation and/or infertility. In addition, obesity is also commonly linked to altered puberty onset and reproductive impairment. Such an impact of energy status on the reproductive axis is conveyed through a number of neuropeptide hormones and metabolic cues, whose nature and mechanisms of action have begun to be deciphered only in recent years. In this context, the emergence of kisspeptins, encoded by the KiSS-1 gene, and their receptor, GPR54, as indispensable signals for normal pubertal maturation and gonadal function, has raised the possibility that the KiSS-1/GRP54 system might also participate in coupling body energy status and reproduction. We revise herein the experimental evidence, gathered in rodent models, supporting the contention that the hypothalamic KiSS-1 system operates as a central conduit for conveying metabolic information onto the centers governing reproductive function, through a putative leptin-kisspeptin-GnRH pathway. Admittedly, key aspects of this 'metabolic' network involving the KiSS-1 system, such as its different peripheral regulators and central effectors, have not been fully elucidated. Nonetheless, the proposed hypothalamic circuitry, responsible for transmitting metabolic information onto the reproductive axis through KiSS-1 neurons, might explain, at least in part, the mechanisms for the well-known alterations of fertility linked to conditions of disturbed energy balance in humans, from anorexia nervosa to morbid obesity.  相似文献   

9.
Kisspeptins, the products of KiSS-1 gene acting via G protein-coupled receptor 54 (GPR54), have recently emerged as fundamental gatekeepers of gonadal function by virtue of their ability to stimulate gonadotropin secretion. Indeed, since the original disclosure of the reproductive facet of the KiSS-1/GPR54 system, an ever-growing number of studies have substantiated the extraordinary potency of kisspeptins to elicit gonadotropin secretion in different mammalian species, under different physiologic and experimental conditions, and through different routes of administration. In this context, studies conducted in laboratory rodents have been enormously instrumental to characterize: (i) the primary mechanisms of action of kisspeptins in the control of gonadotropin secretion; (ii) the pharmacological consequences of acute vs. continuous activation of GPR54; (iii) the roles of specific populations of kisspeptin-producing neurons at the hypothalamus in mediating the feedback effects of sex steroids; (v) the function of kisspeptins in the generation of the pre-ovulatory surge of gonadotropins; and (iv) the influence of sex steroids on GnRH/gonadotropin responsiveness to kisspeptins. While some of those aspects of kisspeptin function will be covered elsewhere in this Special Issue, we summarize herein the most salient data, obtained in laboratory rodents, that have helped to define the physiologic roles and putative pharmacological implications of kisspeptins in the control of male and female gonadotropic axis.  相似文献   

10.
11.
KISS-1/GPR54基因及其在生殖中的作用   总被引:3,自引:0,他引:3  
冯涛  储明星  张英杰 《遗传》2008,30(4):419-425
KISS-1及其受体GPR54基因对青春期的正常启动具有重要作用。青春期开始前后, 动物下丘脑中KISS-1和GPR54 mRNA水平很高, Kisspeptins(KISS-1基因产物)通过激活GPR54增加促性腺激素的释放, KISS-1基因的表达受性腺类固醇激素的调控。GPR54基因突变可以导致人和鼠的特发性促性腺激素分泌不足性腺机能减退症和促性腺激素依赖性性早熟。文章还介绍了KISS-1、GPR54基因的结构、表达、多态性以及和其它生殖调控因子之间的相互关系。  相似文献   

12.
13.
The KiSS1/GPR54 system in fish   总被引:1,自引:0,他引:1  
Elizur A 《Peptides》2009,30(1):164-170
  相似文献   

14.
Kisspeptin is a 54-amino acid peptide, encoded by the anti-metastasis gene KiSS-1, that activates G protein-coupled receptor 54 (GPR54). The kisspeptin-GPR54 system is critical to normal reproductive development. KiSS-1 gene expression is increased in the human placenta in normal and molar pregnancies. Circulating kisspeptin is dramatically increased in normal pregnancy, but levels in GTN have not previously been reported. The present study was designed to determine whether plasma kisspeptin levels are altered in patients with malignant GTN. Thirty-nine blood samples were taken from 11 patients with malignant GTN at presentation during and after chemotherapy. Blood was also sampled from nonpregnant and pregnant volunteers. Plasma kisspeptin IR and hCG concentrations were measured. Plasma kisspeptin IR concentration in nonpregnant (n = 16) females was <2 pmol/l. Plasma kisspeptin IR in females was 803 +/- 125 pmol/l in the first trimester of pregnancy (n = 13), 2,483 +/- 302 pmol/l in the third trimester of pregnancy (n = 7), and <2 pmol/l on day 15 postpartum (n = 7). Plasma kisspeptin IR and hCG concentrations in patients with malignant GTN were elevated at presentation and fell during and after treatment with chemotherapy in each patient (mean plasma kisspeptin IR: prechemotherapy 1,363 +/- 1,076 pmol/l vs. post-chemotherapy <2 pmol/l, P < 0.0001; mean plasma hCG: prechemotherapy 227,191 +/- 152,354 U/l vs. postchemotherapy 2 U/l, P < 0.0001). Plasma kisspeptin IR strongly positively correlated with plasma hCG levels (r(2) = 0.99, P < 0.0001). Our results suggest that measurement of plasma kisspeptin IR may be a novel tumor marker in patients with malignant GTN.  相似文献   

15.
16.
In seasonal species, photoperiod exerts tight regulation of reproduction to ensure that birth occurs at the most favorable time of yr. A distinct photoneuroendocrine circuit composed of the retina, suprachiasmatic nucleus (SCN) of the hypothalamus, and pineal gland transduces daylength into a rhythmic secretion of melatonin. The duration of the night-time rise of this hormone conveys daylength information to the organism. Melatonin is known to mediate the control of seasonal reproduction, but how it modulates sexual activity is far from understood. Recent data indicate that the product of the KiSS-1 gene is a potent stimulator of the hypothalamic-pituitary-gonadal axis and may play, together with its receptor GPR54, a central role in the neuroendocrine regulation of gonadotropin secretion. This article briefly reviews these findings and presents arguments that KiSS-1 could take part in the seasonal control of reproduction.  相似文献   

17.
GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we investigated the role of GPR54 in T cell and immune tolerance. GPR54 deficiency led to an enlarged thymus, an increased number of thymocytes, and altered thymic micro-architecture starting around puberty, indicating GPR54 function in T-cell development through its regulatory effect on the gonadal system. However, flow cytometry revealed a significant reduction in the peripheral regulatory T cell population and a moderate decrease in CD4 single-positive thymocytes in prepubertal Gpr54~(-/-) mice. These phenotypes were confirmed in chimeric mice with GPR54 deficient bone marrow-derived cells. In addition, we found elevated T cell activation in peripheral and thymic T cells in Gpr54~(-/-) mice. When intact mice were immunized with myelin oligodendrocyte glycoprotein, a more severe experimental autoimmune encephalomyelitis(EAE) developed in the Gpr54~(-/-) mice. Interestingly, aggravated EAE disease was also manifested in castrated and bone marrow chimeric Gpr54~(-/-) mice compared to the respective wild-type control,suggesting a defect in self-tolerance resulting from GPR54 deletion through a mechanism that bypassed sex hormones. These findings demonstrate a novel role for GPR54 in regulating self-tolerant immunity in a sex hormone independent manner.  相似文献   

18.
19.
The kisspeptin hormones are a family of peptides encoded by the KiSS-1 gene, which bind to the G-protein coupled receptor-54 (GPR54). Interactions between kisspeptin and GPR54 are thought to play a critical role in reproduction. In agreement with animal data, kisspeptin-54 administration acutely stimulates the release of gonadotrophins in both male and female healthy subjects, with no observed adverse effects. Furthermore, its potency is comparable to those of other gonadotrophin secretagogues studied. The kisspeptin-GPR54 system thus offers a novel means of therapeutically manipulating the hypothalamo-pituitary-gonadal (HPG) axis in humans. This article aims to provide a focused review of the experimental data which inform us how kisspeptin influences the HPG axis in humans.  相似文献   

20.
G protein-coupled receptor 54 (GPR54) is a G(q/11)-coupled 7 transmembrane-spanning receptor (7TMR). Activation of GPR54 by kisspeptin (Kp) stimulates PIP(2) hydrolysis, Ca(2+) mobilization and ERK1/2 MAPK phosphorylation. Kp and GPR54 are established regulators of the hypothalamic-pituitary-gonadal (HPG) axis and loss-of-function mutations in GPR54 are associated with an absence of puberty and hypogonadotropic hypogonadism, thus defining an important role of the Kp/GPR54 signaling system in reproductive function. Given the tremendous physiological and clinical importance of the Kp/GPR54 signaling system, we explored the contributions of the GPR54-coupled G(q/11) and β-arrestin pathways on the activation of a major downstream signaling molecule, ERK, using G(q/11) and β-arrestin knockout mouse embryonic fibroblasts. Our study revealed that GPR54 employs the G(q/11) and β-arrestin-2 pathways in a co-dependent and temporally overlapping manner to positively regulate ERK activity and pERK nuclear localization. We also show that while β-arrestin-2 potentiates GPR54 signaling to ERK, β-arrestin-1 inhibits it. Our data also revealed that diminished β-arrestin-1 and -2 expression in the GT1-7 GnRH hypothalamic neuronal cell line triggered distinct patterns of gene expression following Kp-10 treatment. Thus, β-arrestin-1 and -2 also regulate distinct downstream responses in gene expression. Finally, we showed that GPR54, when uncoupled from the G(q/11) pathway, as is the case for several naturally occurring GPR54 mutants associated with hypogonadotropic hypogonadism, continues to regulate gene expression in a G protein-independent manner. These new and exciting findings add significantly to our mechanistic understanding of how this important receptor signals intracellularly in response to kisspeptin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号