首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MUC8 gene expression is overexpressed in nasal polyp epithelium and is also increased by treatment with inflammatory mediators in nasal epithelial cells. These data suggest that MUC8 may be one of important mucin genes expressed in human airway. However, the mechanisms of various inflammatory mediator-induced MUC8 gene expression in normal nasal epithelial cells remain unclear. We examined the mechanism by which prostaglandin E(2) (PGE2), an arachidonic acid metabolite, increases MUC8 gene expression levels. Here, we show that ERK mitogen-activated protein kinase is essential for PGE2-induced MUC8 gene expression in normal human nasal epithelial cells and that p90 ribosomal S 6 protein kinase 1 (RSK1) mediates the PGE2-induced phosphorylation of cAMP-response element binding protein. Our results also indicate that cAMP-response element at the -803 region of the MUC8 promoter is an important site of PGE2-induced MUC8 gene expression. In conclusion, this study gives insights into the molecular mechanism of PGE2-induced MUC8 gene expression in human airway epithelial cells.  相似文献   

3.
Mucus hypersecretion is a prominent feature of respiratory diseases, and MUC5B is a major airway mucin. Mucin gene expression can be affected by inflammatory mediators, including prostaglandin (PG) D(2,) an inflammatory mediator synthesized by hematopoietic PGD synthase (H-PGDS). PGD(2) binds to either D-prostanoid receptor (DP1) or chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). We investigated the mechanisms by which PGD(2) induces MUC5B gene expression in airway epithelial cells. Western blot analysis showed that H-PGDS was highly expressed in nasal polyps. Similar results were obtained for PGD(2) expression. In addition, we could clearly detect the expressions of both H-PGDS and DP1 in nasal epithelial cells but not CRTH2. We demonstrated that PGD(2) increased MUC5B gene expression in normal human nasal epithelial cells as well as in NCI-H292 cells in vitro. S5751, a DP1 antagonist, inhibited PGD(2)-induced MUC5B expression, whereas a CRTH2 antagonist (OC0459) did not. These data suggest that PGD(2) induced MUC5B expression via DP1. Pretreatment with extracellular signal-regulated kinase (ERK) inhibitor (PD98059) blocked both PGD(2)-induced ERK mitogen-activated protein kinase (MAPK) activation and MUC5B expression. Proximity ligation assays showed direct interaction between RSK1 and cAMP response element-binding protein (CREB). Stimulation with PGD(2) caused an increase in intracellular cAMP levels, whereas intracellular Ca(2+) did not have such an effect. PGD(2)-induced MUC5B mRNA levels were regulated by CREB via direct interaction with two cAMP-response element sites (-921/-914 and -900/-893). Finally, we demonstrated that PGD(2) can induce MUC5B overproduction via ERK MAPK/RSK1/CREB signaling and that DP1 receptor may have suppressive effects in controlling MUC5B overproduction in the airway.  相似文献   

4.
5.
6.
7.
Mucus hypersecretion and persistent airway inflammation are common features of various airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. One key question is: does the associated airway inflammation in these diseases affect mucus production? If so, what is the underlying mechanism? It appears that increased mucus secretion results from increased mucin gene expression and is also frequently accompanied by an increased number of mucous cells (goblet cell hyperplasia/metaplasia) in the airway epithelium. Many studies on mucin gene expression have been directed toward Th2 cytokines such as interleukin (IL)-4, IL-9, and IL-13 because of their known pathophysiological role in allergic airway diseases such as asthma. However, the effect of these cytokines has not been definitely linked to their direct interaction with airway epithelial cells. In our study, we treated highly differentiated cultures of primary human tracheobronchial epithelial (TBE) cells with a panel of cytokines (interleukin-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, and tumor necrosis factor alpha). We found that IL-6 and IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. The Th2 cytokines IL-4, IL-9, and IL-13 did not stimulate MUC5AC or MUC5B in our experiments. A similar stimulation of MUC5B/Muc5b expression by IL-6 and IL-17 was demonstrated in primary monkey and mouse TBE cells. Further investigation of MUC5B expression demonstrated that IL-17's effect is at least partly mediated through IL-6 by a JAK2-dependent autocrine/paracrine loop. Finally, evidence is presented to show that both IL-6 and IL-17 mediate MUC5B expression through the ERK signaling pathway.  相似文献   

8.
Eosinophil recruitment and mucus hypersecretion are characteristic of asthmatic airway inflammation, but eosinophils have not been shown to induce mucin production. Because an epidermal growth factor receptor (EGFR) cascade induces MUC5AC mucin in airways, and because EGFR is up-regulated in asthmatic airways, we examined the effect of eosinophils on MUC5AC mucin production in NCI-H292 cells (a human airway epithelial cell line that produces mucins). Eosinophils were isolated from the peripheral blood of allergic patients, and their effects on MUC5AC mucin gene and protein synthesis were assessed using in situ hybridization and ELISAs. When IL-3 plus GM-CSF or IL-3 plus IL-5 were added to eosinophils cultured with NCI-H292 cells, MUC5AC mucin production increased; eosinophils or cytokines alone had no effect. Eosinophil supernatant obtained by culturing eosinophils with IL-3 plus GM-CSF or IL-3 plus IL-5 also increased MUC5AC synthesis in NCI-H292 cells, an effect that was prevented by selective EGFR inhibitors (AG1478, BIBX1522). Supernatant of activated eosinophils induced EGFR phosphorylation in NCI-H292 cells. Supernatant of activated eosinophils contained increased concentrations of TGF-alpha protein (an EGFR ligand) and induced up-regulation of TGF-alpha expression and release in NCI-H292 cells. A blocking Ab to TGF-alpha reduced activated eosinophil-induced MUC5AC synthesis in NCI-H292 cells. These results show that activated eosinophils induce mucin synthesis in human airway epithelial cells via EGFR activation, and they implicate TGF-alpha produced by eosinophils and epithelial cells in the EGFR activation that results in mucin production in human airway epithelium.  相似文献   

9.
10.
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases and contributes to their morbidity and mortality by plugging airways and causing recurrent infections. Human neutrophil elastase (HNE) exists in high concentrations (1-20 microM) in airway secretions of these patients and induces overproduction of MUC5AC mucin, a major component of airway mucus. Previous studies showed that HNE induces MUC5AC mucin production involving reactive oxygen species (ROS) generation and TGF-alpha-dependent epidermal growth factor receptor (EGFR) activation in human airway epithelial cells. However, the molecular mechanisms involved in these responses are not defined. TNF-alpha-converting enzyme (TACE) cleaves pro-TGF-alpha into soluble TGF-alpha and can be activated by ROS. We hypothesize that HNE activates TACE via ROS generation, resulting in cleavage of pro-TGF-alpha, EGFR activation, and MUC5AC mucin expression in airway epithelial cells. Here we show that in human airway epithelial cells HNE increases TGF-alpha release, EGFR phosphorylation, and MUC5AC mucin expression, effects that were attenuated by TACE inhibitor TAPI-1 and by specific knockdown of TACE expression with small interfering RNA, implicating TACE in HNE-induced responses. These responses to HNE were also reduced by pretreatment with ROS scavengers, implicating ROS. Furthermore, we show that HNE causes protein kinase C (PKC) activation and translocation from cytosol to plasma membrane; blockade of this effect by PKC inhibitors reduced HNE-induced ROS generation and other responses, implicating PKC. We conclude that HNE induces MUC5AC mucin expression via a cascade involving PKC-ROS-TACE in human airway epithelial cells.  相似文献   

11.
12.
13.
Mucus hypersecretion is a remarkable pathophysiological manifestation in airway obstructive diseases. These diseases are usually accompanied with elevated shear stress due to bronchoconstriction. Previous studies have reported that shear stress induces mucin5AC (MUC5AC) secretion via actin polymerization in cultured nasal epithelial cells. Furthermore, it is well known that cortactin, an actin binding protein, is a central mediator of actin polymerization. Therefore, we hypothesized that cortactin participates in MUC5AC hypersecretion induced by elevated shear stress via actin polymerization in cultured human airway epithelial cells. Compared with the relevant control groups, Src phosphorylation, cortactin phosphorylation, actin polymerization and MUC5AC secretion were significantly increased after exposure to elevated shear stress. Similar effects were found when pretreating the cells with jasplakinolide, and transfecting with wild-type cortactin. However, these effects were significantly attenuated by pretreating with Src inhibitor, cytochalasin D or transfecting cells with the specific small interfering RNA of cortactin. Collectively, these results suggest that elevated shear stress induces MUC5AC hypersecretion via tyrosine-phosphorylated cortactin-associated actin polymerization in cultured human airway epithelial cells.  相似文献   

14.
15.
Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H2O2), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H2O2, compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.  相似文献   

16.
Mucin 5AC (MUC5AC) hypersecretion induces airway narrowing in patients with asthma, which leads to breathing problems. We investigated the regulation of MUC5AC secretion by extracellular matrix (ECM) proteins in human primary airway epithelial cells from patients with asthma. The addition of type IV collagen to three-dimensional cultured human primary airway epithelial cells, which mimics the airway surface, reduced MUC5AC secretion in the medium, while the addition of laminin increased MUC5AC secretion. Furthermore, the addition of fibronectin did not affect MUC5AC secretion. In particular, the repeated addition of a low concentration of type IV collagen demonstrated a cumulative effect on the reduction in MUC5AC secretion. Human primary cells incubated with type IV collagen showed downregulated extracellular signal-regulated kinase (ERK) activity, which induced MUC5AC hypersecretion but did not affect Akt activity. These results suggest that the addition of type IV collagen to the apical surface of primary cells downregulates MUC5AC secretion and has a cumulative effect on MUC5AC secretion which might be effected via the ERK signaling pathway.  相似文献   

17.
18.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

19.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

20.
The surface of the human respiratory tract is covered with a mucus layer containing mucin 5AC (MUC5AC) and mucin 5B (MUC5B) as the main components. This layer contributes to biological defense by eliminating irritants, but excessive MUC5AC secretion by the airway epithelial cells exacerbates asthma. Therefore, regulating mucin production is important for asthma treatment. In this study, the effects of integrin β1 subunit on MUC5AC and MUC5B production were examined in NCI–H292 human lung cancer epithelial cells. When integrin β1 was overexpressed, cellular and secreted MUC5AC levels were decreased, whereas cellular MUC5B production was increased. Conversely, integrin β1 depletion using siRNA increased cellular and secreted MUC5AC production, but decreased cellular MUC5B production. Further, the activity of extracellular signal-regulated kinase (ERK), which promotes MUC5AC production, was decreased by integrin β1 overexpression and increased by its depletion. These results suggest that integrin β1 suppresses MUC5AC production and promotes MUC5B production by downregulating ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号