首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Interleukin-6 (IL-6), an inflammatory cytokine, is one of the most important mediators of fever, the acute phase response, and inflammatory conditions. Described here is an integrated microfluidic immunosensor capable of detecting the concentration of IL-6 in human serum samples by use of an electrochemical method in a microfluidic biochip format. The detection of IL-6 was carried out using a sandwich immunoassay method based on the use of anti-IL-6 monoclonal antibodies, immobilized on a 3-aminopropyl-modified controlled-pore glass (APCPG) packet in a central channel (CC) of the microfluidic system. The IL-6 in the serum sample is allowed to react immunologically with the immobilized anti-IL-6 and biotin-labeled second antibodies specific to IL-6. After washing, the streptavidin–alkaline phosphatase conjugate is added. p-Aminophenyl phosphate is converted to p-aminophenol by alkaline phosphatase, and the electroactive product is quantified on a gold electrode at 0.10 V. For electrochemical detection and enzyme immunoassay, the LOD was 0.41 and 1.56 pg mL−1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection.  相似文献   

2.
A new electrochemical immunoassay strategy for direct detection of carcinoembryoninc antigen (CEA) in serum was developed by using multiarmed star-like platinum nanowires (PtNWs) with biomolecular assembly as signal tags on an anti-CEA-functionalized graphene sensing platform. Initially, the PtNWs were synthesized via a wet chemical method, and then the synthesized PtNWs were used for the co-immobilization of CEA and horseradish peroxidase (HRP). Compared with platinum nanoparticles, the prepared PtNWs could provide a large room for the conjugation of HRP and CEA. With a competitive-type immunoassay format, the assay was performed in two types of supporting electrolytes including new born cattle serum (NBCS) and acetate buffer solution (ABS, pH 5.5), respectively. Similar detection limit (LOD) of 5.0 pg mL−1vs. 1.0 pg mL−1 but narrower dynamic working linear range of 0.01–60 ng mL−1vs. 0.002–80 ng mL−1 was obtained toward CEA standards in the NBCS compared to the ABS. The intra-assay coefficients of variation (CVs) were 4.3%, 8.6%, and 6.2% at 0.05, 10, and 40 ng mL−1 CEA, respectively, while the inter-assay CVs were 7.6%, 10.5%, and 8.9% at the above-mentioned levels, respectively. In addition, the selectivity and stability of the electrochemical immunosensor were acceptable. Importantly, the developed method was used to assay clinical serum specimens, receiving a good relation with those obtained from the referenced method.  相似文献   

3.
Immunoglobulin E (IgE)-mediated type I allergies affect over 25% of the world's population; they are among the most common diseases in developed countries. Therefore, simple and rapid in vivo and in vitro methods for diagnosing allergies are becoming increasingly important. In this paper, we demonstrate the feasibility of using sulforhodamine B, a fluorescent dye, entrapped inside immunoliposomes, the outer surfaces of which were sensitized with IgE, as a signal amplifier for the development of a simple, rapid, and inexpensive colorimetric affinity chromatographic immunoassay for the detection of total IgE in serum. This assay operates based on competition between standards (or human serum samples) containing IgE and IgE-sensitized immunoliposomes for the limited number of antigen binding sites of immobilized anti-IgE antibodies at the antigen capture (AC) zone on the nitrocellulose membranes. The color density of the AC zone is indirectly proportional to the number of IgE units present in the test sample. The detection limit of this liposome-based immunoaffinity chromatographic assay was 0.37 ng in IgE-free serum solution (equivalent to 20 μL of a 18.5 ng mL−1 solution). A commercially available ELISA kit was used as a reference method to validate the proposed assay through the analysis of three human serum samples.  相似文献   

4.
A multiplexing electrochemical immunosensor was developed for ultrasensitive detection of cancer related protein biomarkers. We employed disposable screen-printed carbon electrode (SPCE) array as the detection platform. A universal multi-labeled nanoprobe was developed by loading HRP and goat-anti-rabbit IgG (secondary antibody, Ab2) onto multiwalled carbon nanotube (MWNT). This universal nanoprobe was available for virtually any sandwich-based antigen detection and showed superiority in several areas. By using the SPCE array and the universal nanoprobe, we could detect as low as 5 pg mL−1 of prostate specific antigen (PSA) and 8 pg mL−1 of Interleukin 8 (IL-8) with the electrochemical immunosensor. We also demonstrated simultaneous detection of two protein biomarkers with this platform. With these attracted features, our immunoassay system shows promising applications for in-field and point-of-care test in clinical diagnostics.  相似文献   

5.
A localized surface plasmon resonance immunoassay has been developed to determine prolactin hormone in human serum samples. Gold nanoparticles were synthesized, and the probe was prepared by electrostatic adsorption of antibody on the surfaces of gold nanoparticles. The pH and the antibody-to-gold nanoparticle ratio, as the factors affecting the probe functions, were optimized. The constructed nanobiosensor was characterized by dynamic light scattering. The sensor was applied for the determination of prolactin antigen concentration based on the amount of localized surface plasmon resonance peak shift. A linear dynamic range of 1–40 ng ml−1, a detection limit of 0.8 ng ml−1, and sensitivity of 10 pg ml−1 were obtained. Finally, the nanobiosensor was applied for the determination of prolactin in human control serum sample.  相似文献   

6.
A new electrochemical immunoassay of alpha-fetoprotein (AFP) was developed on an organic–inorganic hybrid nanostructure-functionalized carbon electrode by coupling with magnetic bionanolabels. Multi-walled carbon nanotubes (CNTs), single-stranded DNA, thionine and AFP were utilized for the construction of the immunosensor, while the core–shell Fe3O4-silver nanocomposites were employed for the label of horseradish peroxidase-anti-AFP conjugates (HRP-anti-AFP-AgFe). Electrochemical measurement toward AFP was carried out by using magnetic bionanolabels as traces and H2O2 as enzyme substrate with a competitive-type immunoassay mode. Experimental results indicated that the immunosensors with carbon nanotubes and DNA exhibited better electrochemical responses than those of without carbon nanotubes or DNA. Under optimal conditions, the electrochemical immunosensor by using HRP-anti-AFP-AgFe as signal antibodies exhibited a linear range of 0.001–200 ng mL−1 AFP with a low detection limit of 0.5 pg mL−1 at 3sB. Both intra- and inter-assay coefficients of variation were 7.3%, 9.4%, 8.7% and 10.2%, 7.8%, 9.4% toward 0.01, 30, 120 ng mL−1 AFP, respectively. The specificity and stability of the electrochemical immunoassay were acceptable. In addition, the methodology was validated for 12 clinical serum specimens including 9 positive specimens and 3 normal specimens, receiving a good correlation with the results obtained from the referenced electrochemiluminescence assay.  相似文献   

7.
Patulin (PAT) is a kind of mycotoxin that has serious harmful impacts on both food quality and human health. A high-affinity ssDNA aptamer that specifically binds to patulin was generated using systemic evolution of ligands by exponential enrichment (SELEX) assisted by graphene oxide (GO). After 15 rounds of positive and negative selection, a highly enriched ssDNA pool was sequenced and the representative sequences were subjected to binding assays to evaluate their affinity and specificity. Of the eight aptamer candidates tested, the sequence PAT-11 bound to patulin with high affinity and excellent selectivity with a dissociation constant (Kd) of 21.83 ± 5.022 nM. The selected aptamer, PAT-11, was subsequently used as a recognition element to develop a detection method for patulin based on an enzyme-chromogenic substrate system. The colorimetric aptasensor exhibited a linear range from 50 to 2500 pg mL−1, and the limit of detection was found to be 48 pg mL−1. The results indicated that GO-SELEX technology was appropriate for the screening of aptamers against small-molecule toxins, offering a promising application for aptamer-based biosensors.  相似文献   

8.
In this work, a novel sandwich-type electrochemical immunosensor has been developed for simultaneous detection of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) based on metal ion labels. Gold nanoparticles decorated multiwall carbon nanotubes (AuNPs@MWCNTs) were used as carriers to immobilize secondary antibodies and distinguishable electrochemical tags of Pb2+ and Cd2+ to amplify the signals. Due to the intrinsic property of high surface-to-volume ratio, the AuNPs@MWCNTs could load numerous secondary antibodies and labels. Therefore, the multiplexed immunoassay exhibited good sensitivity and selectivity. Experimental results revealed that this sandwich-type immunoassay displayed an excellent linear response, with a linear range of 0.01 to 60 ng mL–1 for both analytes and detection limits of 3.0 pg mL–1 for CEA and 4.5 pg mL–1 for AFP (at a signal-to-noise ratio of 3). The method was successfully applied for the determination of AFP and CEA levels in clinical serum samples.  相似文献   

9.
Serum collagen type IV (COLIV) is a promising tumor marker. High COLIV concentrations have been found in the serum of patients with colorectal, gastric, lung, liver and breast cancers. The aim of this work was to develop a biosensor for use with the Surface Plasmon Resonance Imaging (SPRI) technique for COLIV determination. The biosensor consists of glass covered with gold and immobilized monoclonal mouse anti-human collagen type IV antibody via cysteamine linker. The biosensor works selectively within a dynamic response range between 10 and 300 ng mL−1, with LOD 2.4 ng mL−1 and LOQ 8 ng mL−1. The precision of determination is 4.7% at a 150 ng mL−1 COLIV spike and 8.0% at a 20 ng mL−1 spike, with recoveries of 101% and 106% respectively. A 100-fold excess of collagen I, albumin, laminin and fibronectin is tolerated. The average COLIV blood plasma concentration of healthy donors determined by the developed method was 69 ± 10 ng mL−1, while the median of six results available in the literature was approximately 80 ng mL−1. The average COLIV blood plasma concentration of breast cancer patients was 360 ± 68 ng mL−1, showing the high potential of COLIV as a marker of this type of cancer.  相似文献   

10.
This paper reports a label-free electrochemical immunosensor for the determination of aflatoxin B1 (AFB1), which is based on a gold electrode modified by a biocompatible film of carbon nanotubes/poly(diallyldimethylammoniumchloride)/Pd–Au nanoparticles (CNTs/PDDA/Pd–Au). The nanocomposite was characterized by transmission electron microscopy and the electrochemical behavior of modified electrodes was investigated by cyclic voltammetry. The CNTs/PDDA/Pd–Au nanocomposites film showed good electron transfer ability, which ensured high sensitivity to detect AFB1 in a range from 0.05 to 25 ng mL−1 with a detection limit of 0.03 ng mL−1 obtained at 3σ (where σ is the standard deviation of the blank solution, n = 10). The proposed immunosensor provides a simple tool for AFB1 detection. This strategy can be extended to any other antigen detection by using the corresponding antibodies.  相似文献   

11.
Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08–6.44 ng mL−1 and the medium inhibition of control (IC50) was 0.73 ng mL−1. It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%–96.6% and with a coefficient of variation (CV) among 2.0%–8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples.  相似文献   

12.
The effect of corn stover pretreatment on glucose quantitation in hydrolysate using Raman spectroscopy is evaluated. Dilute sulfuric-acid pretreatment results in a 20 mg mL−1 glucose limit of detection in hydrolysate. Soaking in aqueous ammonia pretreatment produces a 4 mg mL−1 limit of detection. Water, ethanol or hexane extraction of corn stover reduces the spectral background that limits glucose detection in dilute acid hydrolysate. Additionally, a Raman spectroscopy multi-peak fitting method is presented to simultaneously measure glucose and xylose concentration in hydrolysate. This method yields a 6.1% average relative standard error at total saccharide concentrations above 45 mg mL−1. When only cellulase is present, glucose and xylose yield were measured by Raman spectroscopy to be 32 ± 4 and 7.0 ± 0.8 mg mL−1, respectively. When both cellulase and hemicellulase were present, xylose yield increased to 18.0 ± 0.5 mg mL−1. Enzymatic or colorimetric assays confirmed the validity of the Raman spectroscopy results.  相似文献   

13.
Gold nanoparticles (GNPs) based dipstick competitive immunoassay was developed to detect organochlorine pesticide such as DDT at nanogram level (ppb). GNPs of definite size were synthesized and conjugated to anti-DDT antibodies (IgY), which served as the detecting reagent. DDA-BSA conjugate (antigen) was immobilized on to nitro cellulose (NC) membrane containing strip. GNPs conjugated anti-DDT antibodies were treated with different concentrations of free DDT ranging from 0.7 ng mL−1 to 1000 ng mL−1 to form an immunocomplex. This immunocomplex solution was further reacted with DDA-BSA conjugate immobilized NC membrane containing strips by dipping the strip in the immunocomplex solution. The free GNPs conjugated anti-DDT antibodies present in the immunocomplex solution were targeted for competitive binding with immobilized DDA-BSA on NC membrane containing strip. Depending on the concentration of free DDT in the sample the binding of GNPs conjugated anti-DDT antibodies to the immobilized DDA-BSA varied and was detected by the development of red color (due to gold nanoparticles) in the detection zone of NC membrane containing strips. The intensity of color development was inversely proportional to the DDT concentration with maximum intensity at zero DDT concentration. The lowest detection limit of DDT was determined to be 27 ng mL−1 with the optimized conditions. The dipstick technique based on GNPs is suitable for the detection of several toxins in food and environmental samples and can be applied for rapid on-site testing of pesticides.  相似文献   

14.
A dual‐signal strategy is proposed based on fluorescent biomass‐based carbon dots (BC‐dots) and chitosan stabilized AuNPs (CS@AuNPs) to determine hyaluronidase (HAase). BC‐dots can induce aggregation of CS@AuNPs nanoparticles with a colour change from red to blue. Positively charged CS@AuNPs interacted with the negatively charged hyaluronic acid (HA) through electrostatic adsorption, and CS@AuNPs maintained stability due to the semirigid coil conformation of HA. However, in the presence of HAase, due to enzymatic hydrolysis of HA by HAase, the CS@AuNPs agglomerated. Based on the change of fluorescence and colour, quantitative analysis of HAase was achieved. Linear ranges for the fluorometric and colorimetric determinations were 2.0–70 U mL?1 and 8–60 U mL?1, respectively, with a detection limit of 0.27 U mL?1. This dual‐signal sensing system possesses high potential for determination of HAase in biological matrices.  相似文献   

15.
In this paper, we have developed and characterized a microfluidic magnetic immunosensor coupled to a gold electrode for the rapid and sensitive quantification of human serum IgG antibodies to Helicobacter pylori. This microorganism cause peptic ulcers and chronic gastritis, affecting around the 10% of the world population. The sensor was completely automated and the antibodies detection in serum samples was carried out using a non-competitive immunoassay based on the use of purified H. pylori antigens that are immobilized on magnetic microspheres 3-aminopropyl-modified. The magnetic microbeads were injected into microchannel devices and manipulated for an external removable magnet. The IgG antibodies in human serum sample are allowed to react immunologically with the immobilized antigens, and the bounded antibodies are quantified by alkaline phosphatase (AP) enzyme-labeled second antibodies specific to human IgG. The p-aminophenyl phosphate (p-APP) was converted to p-aminophenol (p-AP) by AP and an electroactive product was detected on gold layer electrode at 0.250 V. The response current obtained from the product of enzymatic reaction is directly proportional to the activity of the enzyme and, consequently, to the amount of IgG antibodies to H. pylori in serum samples. The electrochemical detection can be done within 1 min and total assay time was 25 min. The calculated detection limits for electrochemical detection and the ELISA procedure were 0.37 and 2.1 U mL−1, respectively, and the within- and between-assay coefficients of variation were below 5%. Our results indicate the potential usefulness of our fabricated microbiochip for the early assessment of human serum immunoglobulin G (IgG) antibodies to H. pylori.  相似文献   

16.
A novel and sensitive immunoassay for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples was developed by using artificial antigen-modified magnetic nanoparticles (MNPs) as immunosensing probes and antibody functionalized upconversion nanoparticles (UCNPs) as signal probes. NaY0.78F4:Yb0.2, Tm0.02 and NaY0.28F4:Yb0.7,Er0.02 UCNPs were prepared and functionalized, respectively, with immobilized monoclonal anti-AFB1 antibodies and anti-OTA antibodies as signal probes. Based on a competitive immunoassay format, the detection limit for both AFB1 and OTA under optimal conditions was as low as 0.01 ng mL−1, and the effective detection range was from 0.01 to 10 ng mL−1. The proposed method was successfully applied to measure AFB1 and OTA in naturally contaminated maize samples and compared to a commercially available ELISA method. The high sensitivity and selectivity of this method is due to the magnetic separation and concentration effect of the MNPs, the high sensitivity of the UCNPs, and the different emission lines of Yb/Tm and Yb/Er doped NaYF4 UCNPs excited by 980 nm laser. Multicolor UCNPs have the potential to be used in other applications for detecting toxins in the field of food safety and other fields.  相似文献   

17.
18.
The cutaneous nociceptive response threshold to mechanical and thermal stimulation, the development of hyperalgesia and plasma extravasation after subcutaneous injection of carrageenan and the development of autotomy behaviour after nerve section were assessed in interleukin-6-deficient (IL-6−/−) and age-matched wild-type (IL-6+/+) mice. IL-6−/−mice had significantly lower response threshold to both mechanical and thermal stimulation in comparison to IL-6+/+controls. Both IL-6−/−and IL-6+/+mice developed hyperalgesia to mechanical and thermal stimulation after localized carrageenan injection, but the magnitude of the hyperalgesia was less in the IL-6−/−than in the IL-6+/+controls. IL-6−/−mice also exhibited less plasma extravasation after carrageenan injection. No difference was noted between males and females in basal nociception and inflammatory hyperalgesia. However, female IL-6−/−mice exhibited autotomy behaviour, a sign of neuropathic pain, significantly more frequently and after a shorter interval following peripheral nerve injury than male IL-6−/−or male and female IL-6+/+mice. It is suggested that IL-6−/−mice exhibited numerous changes in nociceptive responses compared to controls, some of which are sex related. The mechanisms of these changes in relation to null-mutation of the IL-6 gene and the influence of genetic background are discussed.  相似文献   

19.
New pre-concentration technique, triple phase suspended droplet microextraction (SD-LPME) and liquid chromatography-photodiode array detection was applied to determine ecstasy, MDMA (3,4-methylendioxy-N-methylamphetamine) in hair samples. In this research MDMA in hair was digested and after treatment extracted. The effective parameters were investigated and method was evaluated. Under the optimal conditions, the MDMA was enriched by factor 98.11. Linearity (r = 0.9921), was obtained in the range of 10–15,000 ng mL?1 and detection limit was 0.1 ng mL?1.  相似文献   

20.
Tigecycline (TIGE) is the newest tetracycline derivative antibiotic with low toxicity, it is used for management of infectious diseases caused by Gram‐positive and Gram‐negative bacteria. Hence, an efficient, selective and sensitive method was developed for analysis of TIGE in commercial formulations, human plasma and urine. The spectrofluorimetric technique based on the reaction of secondary amine moiety in TIGE with 4‐chloro‐7‐nitrobenzofurazan (NBD‐Cl) in slightly alkaline medium producing a highly fluorescent product measured at 540 nm (λex at 470 nm) after heating for 15 min at 75°C. The proposed strategy was upgraded and approved by ICH rules and bio‐analytical validated using US‐FDA recommendations. A linear relationship between fluorescence intensity and TIGE concentration was observed over the concentration range 40–500 ng mL?1 with limit of quantification (LOQ) 21.09 ng mL?1 and limit of detection (LOD) 6.96 ng mL?1.The ultra‐affectability and high selectivity of the proposed strategy permits analysis of TIGE in dosage form, human plasma and urine samples with good recovery ranged from 97.23% to 98.72% and from 99.36% to 99.80% respectively, without any interfering from matrix components. Also, the developed strategy was used to examine the stability of TIGE in human plasma and applied for pharmacokinetic investigation of TIGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号