首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian misalignment between internal and environmental rhythms dysregulates blood pressure (BP) variability because of disruption of the biological clock, resulting in increased nighttime BP. Although exposure to light-at-night is associated with the circadian misalignment, it remains unclear whether exposure to light-at-night in home settings is associated with nighttime BP. In this cross-sectional analysis of 528 elderly individuals (mean age: 72.8 years), we measured bedroom light intensity at 1-min intervals on two consecutive nights along with ambulatory BP, overnight urinary melatonin excretion and actigraphy. With regard to adjusted mean comparisons using analysis of covariance, the light-at-night group (average: ≥5?lux; n?=?109) showed significantly higher nighttime systolic BP (SBP; adjusted mean: 120.8 vs. 116.5?mmHg, p?=?0.01) and diastolic BP (70.1 vs. 67.1?mmHg, p?<?0.01) compared with the Darker group (average: <5?lux; n?=?419) independently of potential confounding factors including overnight urinary melatonin excretion and actigraphic sleep quality. We observed consistent associations between light-at-night and nighttime BP in different cutoff values for light-at-night intensity (i.e. 3 and 10?lux). In conclusion, exposure to light-at-night in home settings is significantly associated with increased nighttime BP in elderly individuals independently of overnight urinary melatonin excretion. A 4.3?mmHg increase in nighttime SBP is associated with a 6.1% increase in total mortality, which corresponds to approximately 10?000 annual excess deaths in Japanese elderly population.  相似文献   

2.
Quantal melatonin suppression by exposure to low intensity light in man   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were examined following three relatively low intensities of artificial light. Six normal, healthy control subjects were all exposed to (a) 200 lux, (b) 400 lux and (c) 600 lux for a three hour duration from midnight to 0300 h. Blood was also collected on a control night where light intensity was less than 10 lux throughout. Significant suppression of melatonin was observed following light of 400 lux and 600 lux intensity when compared to the control night (p less than 0.05; Mann-Whitney U-test). 200 lux light did not produce a statistically significant melatonin suppression when compared with control samples. Each light intensity produced its own individual maximal melatonin suppression by one hour of exposure. Increased duration of exposure to the light had no further influence on melatonin plasma concentrations. These data confirm a dose response relationship between light and melatonin suppression, and indicate that there is no reciprocal relationship between the effects of light intensity and the duration of exposure on maximal melatonin suppression in man.  相似文献   

3.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

4.
In this work, we investigate the locomotor behaviour of Talitrus saltator (Montagu 1808) for a population collected from the supralittoral zone of Korba beach. The locomotor activity rhythm was recorded for adult individuals during 10 summer days under continuous light with four different luminous intensities: 5 lux (N = 30), 35 lux (N = 30), 75 lux (N = 30) and 140 lux (N = 15). By the end of the experiments, 100% of the considered individuals were found alive under light intensities of 35 and 140 lux, whereas only 86 and 90% were found alive under light intensity of 5 and 75 lux, respectively. Furthermore, whatever the imposed luminous intensity is, actograms showed a clear drift to the right lengthening day after day the circadian period. Moreover, we found that by raising the light intensity, the drift becomes increasingly important. Actograms as well as activity curves, results showed that the locomotor activity profiles are mainly unimodal and their percentage increases when increasing the light intensity. Furthermore, periodogram analysis highlighted the presence of ultradian and circadian components where the longest periods were observed with the highest luminous intensity. In addition, the locomotor activity rhythm was statistically more defined and individuals of Talitrus saltator were significantly more active under the lowest luminous intensity.  相似文献   

5.
Despite the common use of bright light exposure for treatment of seasonal affective disorder (SAD), the underlying biology of the therapeutic effect is not clear. Moreover, there is a debate regarding the most efficacious wavelength of light for treatment. Whereas according to the traditional approach full-spectrum light is used, recent studies suggest that the critical wavelengths are within the range of blue light (460 and 484 nm). Our previous work shows that when diurnal rodents are maintained under short photoperiod they develop depression- and anxiety-like behavioral phenotype that is ameliorated by treatment with wide-spectrum bright light exposure (2500 lux at the cage, 5000 K). Our current study compares the effect of bright wide-spectrum (3,000 lux, wavelength 420- 780 nm, 5487 K), blue (1,300 lux, wavelength 420-530 nm) and red light (1,300 lux, wavelength range 600-780 nm) exposure in the fat sand rat (Psammomys Obesus) model of SAD. We report results of experiments with six groups of sand rats that were kept under various photoperiods and light treatments, and subjected to behavioral tests related to emotions: forced swim test, elevated plus maze and social interactions. Exposure to either intense wide-spectrum white light or to blue light equally ameliorated depression-like behavior whereas red light had no effect. Bright wide-spectrum white light treatment had no effect on animals maintained under neutral photoperiod, meaning that light exposure was only effective in the pathological-like state. The resemblance between the effects of bright white light and blue light suggests that intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in the underlying biology of SAD and light therapy.  相似文献   

6.
ABSTRACT

Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.  相似文献   

7.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

8.
This clinical methods comparison study describes the difference between light levels measured at the wrist (Actiwatch-L) and at the eye (Daysimeter) in a postoperative in-patient population. The mean difference between the two devices was less than 10 lux at light levels less than 5000 lux. Agreement between the devices was found to decrease as eye-level light exposure increased. Measurements at eye level of 5000 lux or more corresponded to a difference between the devices of greater than 100 lux. Agreement between the eye- and wrist-level light measurements also appears to be influenced by time of day. During the day, the measurement differences were on average 50 lux higher at eye level, whereas at night they were on average 50 lux lower. Although the wrist-level monitor was found to underestimate light exposure at higher light levels, it was well tolerated by participants in the clinical setting. In contrast, the eye-level monitor was cumbersome and uncomfortable for the patients to wear. This study provides light-exposure data on patients in real conditions in the clinical environment. The results show that wrist-level monitoring provides an adequate estimate of light exposure for in-hospital circadian studies.  相似文献   

9.
10.
The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration.  相似文献   

11.
12.
This clinical methods comparison study describes the difference between light levels measured at the wrist (Actiwatch-L) and at the eye (Daysimeter) in a postoperative in-patient population. The mean difference between the two devices was less than 10 lux at light levels less than 5000 lux. Agreement between the devices was found to decrease as eye-level light exposure increased. Measurements at eye level of 5000 lux or more corresponded to a difference between the devices of greater than 100 lux. Agreement between the eye- and wrist-level light measurements also appears to be influenced by time of day. During the day, the measurement differences were on average 50 lux higher at eye level, whereas at night they were on average 50 lux lower. Although the wrist-level monitor was found to underestimate light exposure at higher light levels, it was well tolerated by participants in the clinical setting. In contrast, the eye-level monitor was cumbersome and uncomfortable for the patients to wear. This study provides light-exposure data on patients in real conditions in the clinical environment. The results show that wrist-level monitoring provides an adequate estimate of light exposure for in-hospital circadian studies. (Author correspondence: )  相似文献   

13.
Circadian misalignment between internal and environmental rhythms dysregulates glucose homeostasis because of disruption of the biological clock, and increases risk of diabetes. Although exposure to evening light and decreased melatonin secretion are both associated with the circadian misalignment, it remains unclear whether they are associated with diabetes. In this cross-sectional study on 513 elderly individuals (mean age, 72.7 years), we measured ambulatory light intensity during the 4?h prior to bedtime at 1-min intervals during two consecutive days and overnight urinary 6-sulfatoxymelatonin excretion (UME) along with glucose metabolism. The median average intensity of evening light exposure and UME were 25.4?lux (interquartile range 17.5–37.6) and 6.6?μg (interquartile range 3.9–9.7), respectively. Both log-transformed average intensity of evening light exposure and log-transformed UME were significantly associated with diabetes in a multivariate logistic regression model adjusted for covariates, including gender, body mass index, duration in bed, and night-time light exposure [adjusted odds ratio (OR), 1.72; 95% confidence interval (CI), 1.12–2.64; p?=?0.01; and adjusted OR, 0.66; 95% CI, 0.44–0.97; p?=?0.04; respectively]. An increase in evening light exposure from 17.5 to 37.6?lux (25–75th percentiles) was associated with a 51.2% (95% CI, 8.2–111.4%) increase in prevalent diabetes, and an increase in UME from 3.9 to 9.7?μg (25–75th percentiles) was associated with a 32.0% (95% CI, 1.9–52.8%) decrease in prevalent diabetes. In conclusion, this study in elderly individuals demonstrated that evening light exposure in home settings and UME were significantly and independently associated with diabetes.  相似文献   

14.
Introduction: Bright light exposure in the late evening can affect cognitive function the following morning either by changing the biological clock and/or disturbing sleep, but the evidence for this effect is scarce, and the underlying mechanism remains unknown. In this study, we first aimed to evaluate the effect of bright light exposure before bedtime on frontal lobe activity the following morning using near-infrared spectroscopy (NIRS) during a Go/NoGo task. Second, we aimed to evaluate the effects of bright light exposure before bedtime on polysomnographic measures and on a frontal lobe function test the following morning.

Methods: Twenty healthy, young males (mean age, 25.5 years) were recruited between September 2013 and August 2014. They were first exposed to control light (150 lux) before bedtime (from 20:00 h to 24:00 h) for 2 days and then to bright light (1,000 lux) before bedtime for an additional 5 days. We performed polysomnography (PSG) on the final night of each light exposure period (on nights 2 and night 7) and performed NIRS, which measures the concentrations of oxygenated and deoxygenated hemoglobin (OxyHb and DeoxyHb, respectively), coupled with a Go/NoGo task the following morning (between 09:30 h and 11:30 h). The participants also completed frontal lobe function tests the following morning.

Results: NIRS showed decreased hemodynamic activity (lower OxyHb and a tendency toward higher DeoxyHb concentration) in the right frontal lobe during the NoGo block after 1000-lux light exposure compared with that during the NoGo block after 150-lux light exposure. The commission error rate (ER) during the Go/NoGo task was higher after 1000-lux light exposure than that during the Go/NoGo task after 150-lux light exposure (1.24 ± 1.09 vs. 0.6 ± 0.69, = 0.002), suggesting a reduced inhibitory response.

Conclusion: This study shows that exposure to bright light before bedtime for 5 days impairs right frontal lobe activation and response inhibition the following morning.  相似文献   


15.
Epidemiological and cellular biological studies indicate the influence of impaired circadian biological rhythmicity on atherosclerosis. Increased exposure to light at night (LAN) is common in modern life, and LAN exposure is the most important environmental cue for circadian misalignment. However, the association between LAN exposure and atherosclerosis has never been explored in humans. In this cross-sectional study, we measured nighttime light intensity in the bedroom along with the intima-media thickness (IMT) of the common carotid artery using ultrasonography in 700 elderly individuals (mean age 71.6 years). Averages of mean and maximal carotid IMT were 0.88?±?0.15?mm and 1.09?±?0.32?mm, respectively. Median intensity of LAN exposure was 0.74?lux (interquartile range, 0.08–3.34). Both mean and maximal carotid IMT significantly increased across quartiles of increasing LAN intensity (p for trend?=?0.002 and <0.001, respectively). After adjustment for confounding factors, including age, gender, body mass index, current smoking status, hypertension, diabetes, dyslipidemia, sleep medication, estimated glomerular filtration rate, nocturia, bedtime, duration in bed (scotoperiod), day length (photoperiod), urinary 6-sulfatoxymelatonin excretion and daytime and nighttime physical activity, multivariate linear regression models revealed significant associations of LAN exposure with carotid IMT measurements [mean: β, 0.032 (fourth versus first quartiles); 95% confidence intervals (CI), 0.002–0.061; p?=?0.037; maximal: β, 0.100 (fourth versus first quartiles); 95% CI, 0.034–0.165; p?=?0.003]. In conclusion, these results suggested that LAN exposure in home settings is significantly associated with subclinical carotid atherosclerosis in the general elderly population.  相似文献   

16.
Light intensity, spectrum and pattern may affect laying hen behaviors and production performance. However, requirements of these lighting parameters from the hens’ standpoint are not fully understood. This study was conducted to investigate hens’ needs for light intensity and circadian rhythm using a light tunnel with five identical compartments each at a different fluorescent light intensity of <1, 5, 15, 30 or 100 lux. The hens were able to move freely among the respective compartments. A group of four W-36 laying hens (23 to 30 weeks of age) were tested each time, and six groups or replicates were conducted. Behaviors of the hens were continuously recorded, yielding data on daily time spent, daily feed intake, daily feeding time, and eggs laid under each light intensity and daily inter-compartment movement. The results show that the hens generally spent more time in lower light intensities. Specifically, the hens spent 6.4 h (45.4%) at 5 lux, 3.0 h (22.1%) at 15 lux, 3.1 h (22.2%) at 30 lux and 1.5 h (10.3%) at 100 lux under light condition; and an accumulation of 10.0 h in darkness (<1 lux) per day. The 10-h dark period was distributed intermittently throughout the day, averaging 25.0±0.4 min per hour. This hourly light-dark rhythm differs from the typical commercial practice of providing continuous dark period for certain part of the day (e.g. 8 h at night). Distributions of daily feed intake (87.3 g/hen) among the different light conditions mirrored the trend of time spent in the respective light intensity, that is, highest at 5 lux (28.4 g/hen, 32.5% daily total) and lowest at 100 lux (5.8 g/hen, 6.7%). Hen-day egg production rate was 96.0%. Most of the eggs were laid in <1 lux (61.9% of total) which was significantly higher than under other light intensities (P<0.05). Findings from this study offer insights into preference of fluorescent light intensity by the laying hens. Further studies to assess or verify welfare and performance responses of the hens to the preferred lighting conditions and rhythm over extended periods are recommended.  相似文献   

17.
《Chronobiology international》2013,30(8):1049-1060
The study investigated the effect of bright blue-enriched versus blue-suppressed indoor light on sleep and wellbeing of healthy participants over 65 years. Twenty-nine participants in 20 private houses in a uniform settlement in Copenhagen were exposed to two light epochs of 3 weeks with blue-enriched (280 lux) and 3 weeks blue-suppressed (240 lux) indoor light or vice versa from 8 to 13 pm in a randomized cross-over design. The first light epoch was in October, the second in November and the two light epochs were separated by one week. Participants were examined at baseline and at the end of each light epoch. The experimental indoor light was well tolerated by the majority of the participants. Sleep duration was 7.44 (95% CI 7.14–7.74) hours during blue-enriched conditions and 7.31 (95% CI 7.01–7.62) hours during blue-suppressed conditions (p?=?0.289). Neither rest hours, chromatic pupillometry, nor saliva melatonin profile showed significant changes between blue-enriched and blue-suppressed epochs. Baseline Pittsburgh Sleep Quality Index (PSQI) was significantly worse in females; 7.62 (95% CI 5.13–10.0) versus 4.06 (95% CI 2.64–5.49) in males, p?=?0.009. For females, PSQI improved significantly during blue-enriched light exposure (p?=?0.007); no significant changes were found for males. The subjective grading of indoor light quality doubled from participants habitual indoor light to the bright experimental light, while it was stable between light epochs, although there were clear differences between blue-enriched and blue-suppressed electrical light conditions imposed. Even though the study was carried out in the late autumn at northern latitude, the only significant difference in Actiwatch-measured total blue light exposure was from 8 to 9 am, because contributions from blue-enriched, bright indoor light were superseded by contributions from daylight.  相似文献   

18.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent. (Author correspondence: )  相似文献   

19.
Light is crucial for the synchronization of internal biological rhythms with environmental rhythms. Hospitalization causes a range of unfavorable medical conditions, including delirium, sleep disturbances, depressed mood, and increased fall, especially in elderly people. The hospital room environment contributes significantly to patients’ circadian physiology and behavior; however, few studies have evaluated light intensity in hospital settings. In this study, bedside light intensity during the daytime (6:00–21:00) was measured at 1-min intervals using a light meter on 4869 bed-days at the Inabe General Hospital in Mie, Japan (latitude 35°N), for approximately 1 month in each season. Daytime light exposure in home settings was measured in nonhospitalized elderly individuals (n = 1113) for two consecutive days at 1-min intervals using a wrist light meter. Median daytime light intensities at window and nonwindow hospital beds were 327.9 lux [interquartile range (IQR), 261.5–378.4] and 118.4 lux (IQR, 100.6–142.9), respectively, and daytime light intensity measured in nonhospitalized elderly individuals was 337.3 lux (IQR, 165.5–722.7). Compared with data in nonhospitalized elderly individuals, nonwindow beds were exposed to significantly lower daytime light intensity (p < 0.001), whereas window beds were exposed to similar daytime light intensity to that of home settings (p = 1.00). These results were consistent regardless of seasons (spring, summer, fall, and winter) or room directions (north vs. south facing). The lowest median daytime light intensity was observed at nonwindow beds in north-facing rooms during the winter (84.8 lux; IQR, 76.0–95.8). Further studies evaluating the incidence of in-hospital outcomes between patients hospitalized in window and nonwindow beds are needed.  相似文献   

20.
The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号