首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
蒋宇彤  张硕  林子佳  倪金凤 《微生物学报》2020,60(12):2635-2649
木质纤维素是地球上最丰富的有机聚合物,白蚁是古老但进化最成功的高效木质纤维素降解者之一。了解白蚁降解高度抗性植物聚合物的机制对工业上生物质能源转化和生物仿生设计有重要的借鉴和指导价值。白蚁和其共生微生物产生的木质纤维素酶在其转化利用木质纤维素上发挥着重要作用。本文从来源作用方面对白蚁自身及其肠道原虫、细菌和真菌产生的纤维素酶、木聚糖酶和漆酶等酶研究概况进行了总结,对其存在的问题和前景进行了展望。本综述有助于全面了解白蚁消化系统木质纤维素酶的基因种类、来源、分布、表达以及酶活性和功能。  相似文献   

2.
白蚁及共生微生物木质纤维素水解酶的种类   总被引:2,自引:2,他引:0  
相辉  周志华 《昆虫知识》2009,46(1):32-40
白蚁是热带生态系统重要的木质纤维素降解者。白蚁种类丰富,可分成高等白蚁和低等白蚁,食性也具有各自特点。白蚁自身可以产生纤维素酶,主要是GHF9的内切葡聚糖酶(EG),也有β-葡萄糖苷酶(GB)。低等白蚁共生的原虫中已发现丰富的纤维素酶基因,属于GHF5,7和45。同时还有其他相关功能基因,如木聚糖酶和果胶类物质水解酶。高等白蚁肠道中没有共生原虫。高等培菌白蚁可以利用共生蚁巢伞属真菌促进木质纤维素降解,真菌可以产生纤维素酶,果胶质水解酶类、木聚糖酶,同时还产生可能与木质素分解相关的一种漆酶,但是从分子水平,关于共生真菌纤维素水解酶的研究还较少。白蚁肠道已分离出许多具有木质纤维素降解能力的菌株,最近的研究也发现了大量细菌纤维素酶基因。白蚁-共生系统丰富的木质纤维素水解酶类为发展生物方法开发纤维素乙醇这一思路提供有价值的资源。  相似文献   

3.
反刍动物瘤胃是自然界中最有效的纤维素降解系统,其纤维素降解能力主要源于寄居于其中的纤维素降解细菌、真菌和原虫。其中,瘤胃纤维素降解细菌因数量庞大、种类繁多以及代谢途径丰富,在木质纤维素降解及利用方面发挥着重要作用。本文综述了国内外瘤胃纤维素降解细菌的种类,分析了瘤胃纤维素降解细菌的特性;阐述了瘤胃纤维素降解细菌通过纤维小体对纤维素的降解过程,以及瘤胃微生物之间的相互作用和相互制约关系;简述宏组学技术在开发新纤维素降解菌和新纤维素酶方面的应用,旨在为进一步研究纤维素降解细菌的降解机理,开发新的纤维素菌种和酶资源提供新的思路。  相似文献   

4.
从重楼根茎中分离、鉴定具有产纤维素酶活性的内生真菌.采用表面消毒法从重楼块茎中分离内生真菌;用纤维素酶活性CMC平板检测分离菌株的产纤维素酶活性;对高产菌株进行形态学观察和分子生物学测序鉴定;探究影响纤维素酶活力的因素;利用平板法检测该株菌产其他胞外水解酶的活性.从3个来源的重楼中分离出41株内生真菌,通过平板检测发现...  相似文献   

5.
三株高效秸秆纤维素降解真菌的筛选及其降解效果   总被引:25,自引:0,他引:25  
【目的】利用多种筛选方法,获得高效秸秆纤维素降解真菌,并研究其秸秆纤维素的降解能力。【方法】采用滤纸片孔洞法、滤纸条降解法、羧甲基纤维素钠(CMC-Na)水解圈测定法、秸秆失重法、纤维素分解率测定法、胞外酶活测定法等常规秸秆纤维素降解菌的筛选方法。【结果】筛选到3株具有较强纤维素降解能力的真菌菌株,经初步鉴定菌株98MJ为草酸青霉(Penicillium oxalicum)、菌株W3为木霉(Trichoderma sp.)、菌株W4为扩张青霉(Penicillium expansum)。菌株W4具有非常强的秸秆纤维素降解能力,10d内对秸秆的降解率可达56.3%,对纤维素、半纤维素和木质素的分解率分别为59.06%、78.75%和33.79%。菌株W4的胞外纤维素酶活力在14.25-49.75U/mL之间。【结论】筛选获得3株高效秸秆纤维素降解真菌菌株,其中菌株W4的纤维素酶活高于已报道的菌株,是一株十分具有研究开发潜力的纤维素酶生产菌株。  相似文献   

6.
木质纤维素降解酶系的高效生产是实现植物生物质大规模生物炼制的重要支撑。就地生产木质纤维素降解酶,有助于降低其使用成本,提高技术经济效益。青霉是自然界常见的木质纤维素降解真菌,可以合成分泌种类多样、组分齐全的木质纤维素降解酶系,已被应用于纤维素酶制剂的工业生产。文中从就地生产降解酶,为木质纤维素生物炼制构建“糖平台”的角度,综述了青霉木质纤维素降解酶系的性质、菌株遗传改造及发酵工艺的研究进展。  相似文献   

7.
梭热杆菌(Clostridium thermocellum)是一种嗜热厌氧细菌,通过分泌大量纤维素酶高效降解纤维素.根据作用纤维素的不同部位,梭热杆菌分泌的纤维素酶分为内切纤维素酶和外切纤维素酶.纤维小体是由支架蛋白、锚定元件、黏合蛋白、纤维素结合域和催化单位组成的复合体,其独特的结构,使得它可以比真菌纤维素酶更紧密地结合到纤维素表面,这个复合结构结合着多种催化单位,而此特殊的结构是梭热杆菌高效降解纤维素的必要条件.近年来,为更深入透彻地了解纤维小体的结构与功能进行了大量的研究工作,现对相关研究进展进行综述,并给出了未来可能的发展方向.  相似文献   

8.
纤维素是来源广泛且储量较大的低成本可再生资源,但其结构致密难以利用。目前降解纤维素需要多种纤维素酶协作,而游离纤维素酶成本高、难以重复利用等问题限制了其广泛应用。利用酵母表面展示技术,可以将多个纤维素酶分别与锚定蛋白融合后共展示在细胞表面,从而构建酵母表面展示纤维素酶体系。这一体系可高效降解纤维素,一方面可以充分发挥表面展示的优点,如易回收、稳定性好、操作简单、成本低;另一方面可以将纤维素有效地降解为葡萄糖,并具有代谢产生物乙醇的潜力。阐述了酵母表面展示体系的构建原则,总结了影响展示体系效率的因素,介绍了这一技术在降解纤维素中的应用,为构建高效酵母表面展示纤维素酶体系及其他多酶体系提供参考。  相似文献   

9.
粗糙脉孢菌作为木质纤维素降解真菌,不仅具有完整的木质纤维素降解酶系,而且还拥有全基因组基因敲除突变体库,是研究丝状真菌纤维素酶表达分泌和木质纤维素降解机制的优秀体系。近年来,国内外利用粗糙脉孢菌系统,在木质纤维素降解机制方面取得了显著进展,包括纤维素酶信号传导、调控以及生物质降解后糖的转运利用等。笔者就相关方面的进展进行综述,并对利用粗糙脉孢菌研究木质纤维素降解利用进行展望,总结和分析木质纤维素降解机制研究的国际前沿动态,有助于加深本领域研究人员对真菌体系纤维素降解机制的理解。  相似文献   

10.
粗糙脉孢菌作为木质纤维素降解真菌,不仅具有完整的木质纤维素降解酶系,而且还拥有全基因组基因敲除突变体库,是研究丝状真菌纤维素酶表达分泌和木质纤维素降解机制的优秀体系。近年来,国内外利用粗糙脉孢菌系统,在木质纤维素降解机制方面取得了显著进展,包括纤维素酶信号传导、调控以及生物质降解后糖的转运利用等。笔者就相关方面的进展进行综述,并对利用粗糙脉孢菌研究木质纤维素降解利用进行展望,总结和分析木质纤维素降解机制研究的国际前沿动态,有助于加深本领域研究人员对真菌体系纤维素降解机制的理解。  相似文献   

11.
生物垃圾好氧处理中的纤维素降解菌生长规律研究   总被引:2,自引:0,他引:2  
目的:研究了蔬菜垃圾好氧处理过程中,纤维素降解菌和半纤维素降解菌(细菌和真菌),纤维素酶活和半纤维素酶活,和有机物降解之间的变化规律。方法:用添加纤维素和半纤维素的牛肉膏蛋白胨培养基和查式培养基,分别培养计数纤维素降解细菌、真菌和半纤维素降解细菌、真菌;马福炉灼烧测有机物含量。结果:好氧处理的初始阶段中,前4d有机物日均降解率5.2%,后3d日均降解率2.2%。结论:半纤维素降解菌的数量比纤维素降解菌的多,半纤维素酶活力,也高于纤维素酶活力;微生物的变化情况为前6d产两种酶的微生物主要有细菌和真菌;从第6d开始真菌快速生长;至第7d真菌纤维素酶和半纤维素酶活力显著升高。  相似文献   

12.
天然纤维素的结晶区必需在内、外切纤维素酶的协同作用下,始可被降解,这是纤维素降解的限速步骤。内、外切纤维素酶均为β-1,4-糖苷键的水解酶,但单一的内、外切纤维素酶却都不能水解天然纤维素的结晶区。内、外切纤维素酶怎样协同降解纤维素的机理一直未得阐明,是天然纤维素降解机制研究中的难点。纤维素酶分子是由具有催化功能的催化结构域(catalytic domain,CD)和具有结合纤维素功能的纤维素结合(吸附)结构域(cellulse biding domain,CBD)及涟结它们的链结区(linker)序列组成。已知一细菌的CBD在吸附纤维素后,纤维素聚合物断裂形成短小纤维,但这一现象还未在真菌中有类似发现,通过对插入质粒pUC-18上的微紫青霉外切葡聚糖纤维二糖水解酶CBHI的 cDNA基因,进行系列序列定向缺失等体外操作,得到了催化结构域序列缺失的重组质粒,转化大肠杆菌JM109后,利用纤维素结合结构域CBD可吸附纤维素的特性,筛选到含CBD编码区的转化子PUC18G,生产出了LacZ-CBD融合蛋白,经木瓜蛋白酶有限酶切后,分离纯化得到了CBD结构域及其链结区称为:CBDCBHI。经X光衍射、红外光谱分析、热活力测定和扫描电镜观察表明,CBDCBHI吸附纤维素后,能够导致纤维素聚合物氢键断裂,结晶度减低和形成短纤维,从而在底物可及性上为内切葡聚糖酶的水解糖化作用提供了条件,为真菌内、外切纤维素酶协同降解天然纤维素的作用机制提供了实验支持,并提出了内切纤维素酶的水解作用可为外切纤维素酶吸附纤维素提供能量的推论。  相似文献   

13.
【背景】纤维素在自然界中储量丰富,但天然纤维素的难降解性成为广泛应用纤维素资源的壁垒,近年来利用微生物来降解纤维素成为热点研究。【目的】筛选分离得到一株具有降解纤维素功能的放线菌菌株Lb1,通过全基因组测序确定其产纤维素酶关键基因5676,对基因5676进行克隆转化,使其在大肠杆菌中进行表达。【方法】通过基因工程技术将产纤维素基因连接到表达质粒上并导入表达菌株,对其降解纤维素生成葡萄糖的能力进行探究。【结果】将Lb1菌株的16S rRNA基因进行比对,确定菌株Lb1属于链霉菌属,命名为Streptomyces sp. Lb1。成功构建出纤维素酶表达载体,并且导入表达菌株大肠杆菌BL21(DE3),重组菌株的产纤维素酶能力大于空载菌株。【结论】通过基因工程技术成功克隆出产纤维素酶基因,从而表达纤维素酶,为今后利用微生物降解纤维素的大规模应用提供参考。  相似文献   

14.
放线菌是一种高GC含量的革兰氏阳性细菌,在陆生、高温的木质纤维素降解生境中占据十分重要的地位.降解木质纤维素菌株的功能基因组分析发现降解纤维素的酶种类和数目相对较多,而降解半纤维素以及果胶成分的酶相对真菌较少.其中,降解纤维素的酶类主要以GH6家族外切酶为主,部分含有GH9和GH48家族的纤维素酶,基因组中还含有AA10家族的多糖裂解氧化酶,因此放线菌可通过持续性水解与氧化双重机制高效降解结晶纤维素.放线菌可通过双精氨酸转运系统快速将已正确折叠的降解酶类分泌至胞外,这些酶分子常具有多个功能结构域,具有耐高温、耐碱性以及高活力等特征.放线菌在木质纤维素降解及次级代谢产物等方面的特点与优势使得其具有巨大的工业应用前景.  相似文献   

15.
瘤胃纤维素降解菌的分离鉴定及其纤维素降解特性   总被引:1,自引:0,他引:1  
邱并生 《微生物学通报》2009,36(3):0458-0458
纤维素是地球上最丰富的可再生有机资源,但是其不溶于水和有机溶剂的难降解特性限制了它的利用.多年来,研究者们在利用纤维素资源方面做着努力,其中,利用微生物产生的纤维素酶降解纤维素,具有条件温和、产物产率高和无二次污染等特点,成为目前较有效且更接近自然的一种纤维素处理方法.同时,由微生物产生的纤维素酶在食品、酿酒、造纸、饲料和纺织等行业也有着广泛的应用.  相似文献   

16.
高效降解纤维素低温真菌的筛选、鉴定及发酵优化   总被引:4,自引:1,他引:3  
【背景】纤维素的生物转化已经成为能源、环境和化工领域的研究热点,但可降解纤维素的低温真菌鲜有报道。【目的】从西藏高海拔的植物根际土壤中筛选具有高效降解纤维素能力的低温真菌,优化其产酶条件,为其工业化应用奠定基础。【方法】利用稀释平板涂布法、刚果红定性及酶活定量分析进行低温降解菌的筛选;根据菌株形态学特征及ITSrDNA序列分析对其进行鉴定;利用单因素实验和响应面优化法优化其产酶条件。【结果】分离筛选到一株高效产纤维素酶的低温真菌NLS-2;鉴定菌株NLS-2为青霉菌属;在低温15°C下,其产纤维素酶的最佳培养条件为稻草粉2.5%,酵母粉0.5%,KH2PO40.5%,发酵时间7d,pH6.5,摇床转速170r/min。【结论】青霉菌NLS-2可在低温条件下生长并具有较强的纤维素酶生产能力,具有良好的应用前景。  相似文献   

17.
通过对产纤维素酶真菌在纤维素刚果红液体培养基中刚果红染料移动情况研究,表明刚果红染料进入真菌的机制为纤维素分解真菌首先分解纤维素物质为含有葡聚糖等结构的多聚糖类物质,多聚糖与刚果红形成多聚糖-刚果红复合物,复合物不仅被吸附到产纤维素酶活的菌丝外表面,而且能被进一步转运吸收至该部分菌丝内部,使菌丝体和菌落呈现红色。所以,纤维素刚果红培养基可作为分离、筛选纤维素分解真菌的特异性培养基。  相似文献   

18.
粘细菌产生的水解酶类研究进展   总被引:2,自引:2,他引:0  
粘细菌隶属于δ变形菌纲(Deltaproteobacteria),是重要的药源微生物类群,但是其分离培养困难,严重限制了粘细菌资源的发掘和开发利用。粘细菌是微生物捕食者,通过产生丰富多样的胞外水解酶,如淀粉酶、蛋白酶、几丁质酶、纤维素酶、磷酸酶、蛋白酶等来裂解其他微生物或分解纤维素等作为营养物质来源。目前,粘细菌分离纯化技术主要是利用被捕食菌或纤维素诱导法。可以说,粘细菌胞外水解酶是研究其分离培养方法的物质基础。然而,目前研究者们对粘细菌产生的水解酶类关注较少。本文主要对粘细菌产生的水解酶种类、性质及其功能进行归纳总结,为今后粘细菌分离培养技术和开发利用等相关研究提供参考。  相似文献   

19.
纤维素酶(Cellulase)是把纤维素降解成葡萄糖、由多个酶协同作用的多酶体系,广泛存在于细菌、真菌和动植物细胞中,部分微生物体内有复杂的纤维素水解系统,可以有效地水解纤维素。目前微生物纤维素酶的研究较为集中,并已广泛应用于生物乙醇生产、食品加工提纯、酿造工业发酵、纺织后整理和饲料加工等多个领域。  相似文献   

20.
里氏木霉产纤维素酶研究进展   总被引:1,自引:0,他引:1  
木质纤维素类生物质被认为是重要且可持续的可再生能源,其主要组成部分是纤维素。纤维素酶是一种能将纤维素分解为葡萄糖的复合酶,能有效地降解木质纤维素生物质。真菌、细菌、放线菌、酵母等多种微生物均可以产生纤维素酶,其中里氏木霉具有完整的纤维素酶系结构,常作为生物技术领域中一个重要菌株,广泛应用于纤维素酶的商业生产。介绍了纤维素酶的作用机理,综述了里氏木霉产纤维素酶的发展现状和研究进展,讨论了生产工艺(如培养条件及产酶诱导物等)对纤维素酶生产的影响,阐述了通过化学诱变及基因改造构建高产纤维素酶的里氏木霉的研究进展以及纤维素酶生产的主要瓶颈,以提供更经济的生产方案,将纤维素酶广泛应用于工业生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号