首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation techniques for mammalian oocytes and embryos have rapidly progressed during the past two decades,emphasizing their importance in various assisted reproductive technologies.Pregnancies and live births resulting from cryopreserved oocytes and embryos of several species including humans have provided proof of principle and led to the adoption of cryopreservation as an integral part of clinical in vitro fertilization.Considerable progress has been achieved in the development and application of the cryopreservation of mammalian oocytes and embryos,including preservation of the reproductive potential of patients who may become infertile,establishment of cryopreserved oocyte banks,and transport of oocytes and embryos internationally.However,the success rates are still far lower than those obtained with fresh oocytes and embryos,and there are still obstacles that need to be overcome.In this review,we address the major obstacles in the development of effective cryopreservation techniques.Such knowledge may help to eliminate these hurdles by revealing which aspects need improvement.Furthermore,this information may encourage further research by cryobiologists and increase the practical use of cryopreservation as a major part of assisted reproductive technologies for both humans and animal species.  相似文献   

2.
乙二醇(ETG)和1,2-丙二醇(PROH)具有高细胞渗透性和低毒性特点,常被用于人及多种哺乳动物早期胚胎冷冻保存。为了比较ETG和PROH对小鼠2-细胞胚的冷冻保护效果,本试验分别采用这两种冷冻保护剂,对小鼠2-细胞胚进行冷冻保存,并采用冻后体外培养和囊胚移植进行冷冻效果检测。结果表明,PROH组胚胎解冻后胚胎存活率与ETG组无显著差异,但PROH组4-细胞胚发育率和囊胚发育率显著高于ETG组(82.7%vs.64.6%,61.2%vs.29.1%,P〈0.01)。囊胚移植结果表明,2-细胞胚胎冻存后能够发育为正常的后代,PROH组和ETG组的囊胚移植后妊娠产仔率无统计学差异(P〉0.05),但均显著低于对照组(P〈0.05)。为了分析两组胚胎冻存后损伤情况,埘解冻后的胚胎细胞微丝进行检测,结果显示ETG组微丝受损的胚胎数高于PROH组。本研究结果证明采用PROH作为冷冻保护剂冷冻保存小鼠2-细胞胚的冻存效果优于ETG[动物学报54(6):1098—1105,2008]。  相似文献   

3.
4.
Spring wheat (Triticum aestivum L.) zygotic embryos were successfully cryopreserved, without the addition of exogenous cryoprotectants, using only an abscisic acid (ABA) pretreatment. Optimum survival was obtained when embryos were cultured in vitro for 10 days on semisolid Murashige and Skoog (MS) nutrient medium supplemented with 0.5 mg/L (±) ABA prior to cryopreservation. The embryos resumed growth within three days when returned to MS medium devoid of ABA but containing 2mg/L 2,4-dichlorophenoxyacetic acid. The embryogenic calli produced from these embryos exhibited normal plant regeneration on auxin-free media. Changes in dw/fw ratio, as well as the esterified fatty acid and sucrose concentrations correlated positively with the development of tolerance to cryopreservation.NRCC Publication No. 33519  相似文献   

5.
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation–dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.  相似文献   

6.
The objective of this study was to assess whether the exposure of zona pellucida-intact bovine embryos to the proteolytic enzyme, trypsin, during embryo washing has a detrimental effect on their subsequent survival and development. Embryos were collected nonsurgically from superovulated cows (n = 19) 7.5 d after insemination. Grade 1 and Grade 2 embryos were washed 12 times in modified Dulbecco's phosphate buffered saline (PBS) containing 0.4% bovine serum albumin (BSA), or in a series of five washes in BSA-PBS (without Ca++ and Mg++), two in 0.25% trypsin in Hank's solution (without Ca++ and Mg++) and five in PBS-BSA medium. Within 30 min after washing, embryos were either transferred nonsurgically into recipient cows, 7 to 8 d post estrus, or cryopreserved and transferred later. Frozen-thawed embryos from five of the donors were cultured for 72 h in vitro and their development was evaluated. Pregnancy rates did not differ (P>0.1) between recipient cows receiving control-washed and trypsin-washed embryos transferred fresh (51.0 vs 56.3%). However, pregnancy rates were higher (P<0.05) for frozen-thawed embryos treated with trypsin before cryopreservation than for frozen-thawed, control-washed embryos (68.2 vs 38.5%). Survival and development of embryos in vitro after cryopreservation did not differ between embryos subjected to the control- and trypsin-wash procedures. These results suggest that exposure of bovine embryos to trypsin for 2 to 3 min during washing did not have a detrimental effect on embryonic development, but may have enhanced cryopreservation of the embryos.  相似文献   

7.
Advancements in cryopreservation of domestic animal embryos.   总被引:10,自引:0,他引:10  
The development of embryo freezing technologies revolutionized cattle breeding. Since then, advancements in cryobiology, cell biology, and domestic animal embryology have enabled the development of embryo preservation methodologies for our other domestic animal species, including sheep and goats. Recently, technologies have been developed to cryopreserve pig embryos, notorious for their extreme sensitivity to cooling; horse embryo cryopreservation is in its infancy. While cryopreservation can enhance the utilization of in vitro embryo production technologies, cryosurvival of in vitro-produced (IVP) or micromanipulated embryos is less than that of in vivo-derived embryos. This review outlines recent efforts in livestock embryo cryopreservation. In the near future, use of preserved embryos could be a routine breeding alternative for all livestock producers providing 1) preservation methods for maternal germplasm, 2) global genetic transport, 3) increased selection pressure within herds, 4) breeding line regeneration or proliferation, and 5) methodology for genetic rescue.  相似文献   

8.
Pig embryos suffer severe sensitivity to hypothermic conditions, which limits their ability to withstand conventional cryopreservation. Research has focused on high lipid content of pig embryos and its role in hypothermic sensitivity, while little research has been conducted on structural damage. Documenting cytoskeletal disruption provides information on embryonic sensitivity and cellular response to cryopreservation. The objectives of this study were to document microfilament (MF) alterations during swine embryo vitrification, to utilize an MF inhibitor during cryopreservation to stabilize MF, and to determine the developmental competence of cytoskeletal-stabilized and vitrified pig embryos. Vitrified morulae/early blastocysts displayed MF disruptions and lacked developmental competence after cryopreservation; hatched blastocysts displayed variable MF disruption and developmental competence. Cytochalasin-b did not improve morula/early blastocyst viability after vitrification; however, it significantly (P < 0.05) improved survival and development of expanded and hatched blastocysts. After embryo transfer, we achieved pregnancy rates of almost 60%, and litter sizes improved from 5 to 7.25 piglets per litter. This study shows that the pig embryo cytoskeleton can be affected by vitrification and that MF depolymerization prior to vitrification improves blastocyst developmental competence after cryopreservation. After transfer, vitrified embryos can produce live, healthy piglets that grow normally and when mature are of excellent fecundity.  相似文献   

9.
Cryopreservation of oocytes and embryos is a crucial step for the widespread and conservation of animal genetic resources. However, oocytes and early embryos are very sensitive to chilling and cryopreservation and although new advances have been achieved in the past few years the perfect protocol has not yet been established. All oocytes and embryos suffer considerable morphological and functional damage during cryopreservation but the extent of the injury as well as differences in survival and developmental rates may be highly variable depending on the species, developmental stage and origin (for example, in vitro produced or in vivo derived, micromanipulated or not). Currently, there are two methods for gamete and embryos cryopreservation: slow freezing and vitrification. We have experienced both techniques but vitrification has become a viable and promising alternative to traditional approaches especially when dealing with in vitro produced or micromanipulated embryos and oocytes. Recently new strategies based on emerging studies in the field of lipid research have been used to reduce intracellular lipid content in bovine in vitro produced embryos and therefore increase their tolerance to micromanipulation and cryopreservation. The addition of a conjugated isomer of linoleic acid, the trans-10, cis-12 octadecadienoic acid to embryo culture medium more than twice improved embryo post-thawing viability after micromanipulation and vitrification. Vitrification was also used for the cryopreservation of embryos belonging to the Portuguese Animal Germplasm Bank project presently running at our facilities. Presented at the International Consensus Meeting “New Horizons in Cell and Tissue Banking” on May 2007 at Vale de Santarém, Portugal.  相似文献   

10.
Plant cryopreservation: Progress and prospects   总被引:9,自引:0,他引:9  
Summary Cryopreservation (liquid nitrogen, −196°C) represents the only safe and cost-effective option for long-term conservation of germplasm of non-orthodox seed species, vegetatively propagated species, and of biotechnology products. Classical cryopreservation techniques, which are based on freeze-induced dehydration, are mainly employed for freezing undifferentiated cultures and apices of cold-tolerant species. New cryopreservation techniques, which are based on vitrification of internal solutes, are successfully employed with all explant types, including cells suspensions and calluses, apices, and somatic and zygotic embryos of temperate and tropical species. The development of cryopreservation protocols is significantly more advanced for vegetatively propagated species than for recalcitrant seed species. Even though its routine use is still limited, there are a growing number of examples where cryopreservation is employed on a large scale for different types of materials, including seeds with orthodox and intermediate storage behaviour, dormant buds, pollen, biotechnology products, and apices sampled from in vitro plantlets of vegetatively propagated species. Cryopreservation can also be employed for uses other than germplasm conservation, such as cryoselection, i.e., the selection through freezing of samples with special properties, or cryotherapy, i.e., the elimination of viruses from infected plants through apex cryopreservation. Because of its high potential, it is expected that cryopreservation will become more frequently employed for long-term conservation of plant genetic resources.  相似文献   

11.
This report presents details of a vitrification methodology for the cryopreservation of embryos of the Mexican fruit fly, Anastrepha ludens. The overall summary of the data indicates that selecting the correct developmental stage for cryopreservation is the most important criterion. The key aspect in selection of the correct stage is to balance depletion of the gut yolk content against development of the embryonic cuticle. Embryogenesis was divided into four stages between 90 and 120 h after incubation at 21.7 degrees C. The classification was based on the intestinal yolk content and the initial development of mandibular-maxillary complex. Stages having low mid-gut yolk content and the appearance of mouth hooks were found to be the most suitable for cryopreservation. Embryos developing at 30 degrees C had premature cuticle formation relative to gut development and significantly lower hatching after cryopreservation. Vitrification of embryos by direct quenching in liquid nitrogen was less effective than quenching after annealing the samples in liquid nitrogen vapor. Quenched samples of vitrification solutions containing 1,2-ethanediol as the major component exhibited fractures. Fracturing occurred less frequently when the solutions were annealed and when containing polyethylene glycol. Hatching of vitrified embryos stored in liquid nitrogen for over 12 months was not statistically different from those held for only 15 min. Our protocol yielded normalized hatching rates that ranged as high as 61%. Selecting the exact stage for cryopreservation from a population of embryos obtained by collection from ovipositing females during a span of just 30 min resulted in nearly 80% of the embryos hatching into larvae.  相似文献   

12.
As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN2). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a “closed” system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease.  相似文献   

13.
Until recently, attempts to preserve porcine embryos have been unsuccessful. Vitrification has been developed as a method of cryopreserving mammalian embryos by avoiding ice crystal formation, assuring a cryopreserved glass state during storage in liquid nitrogen. Vitrification may be a useful method of overcoming the deleterious effects of chilling injury when pig embryos are cryopreserved using conventional slow freezing procedures. In this study, we applied vitrification procedures for rodent and/or bovine embryos to cryopreserve porcine embryos. Following warming, survival was defined as normal development of embryos in culture, namely the formation or reexpansion of the blastocoelic cavity. Experiment 1 tested the relative toxicity of 3 vitrification procedures on Day-5, 6 and 7 porcine embryos. Embryos equilibrated in vitrification solution (VS3a) continued to develop in vitro at rates comparable to that of untreated control embryos. Experiment 2 was designed to evaluate embryonic development following cryopreservation by vitrification in VS3a. Day-5 porcine embryos did not survive cryopreservation while Day-6 and Day-7 embryos survived and continued development in vitro. In Experiment 3, we evaluated a period of culture prior to vitrification and its effect on cryosurvivability of porcine embryos. A 3-h culture period prior to vitrification had no effect on cryosurvivability over that of freshly recovered, immediately vitrified embryos. These studies indicate, for the first time, that porcine embryos can be successfully cryopreserved by vitrification based on morphology and subsequent development in vitro. However, survival following cryopreservation appears to depend upon embryonic age or stage of development.  相似文献   

14.
Summary One limitation to the widespread use of in vitro-produced embryos in cattle is their poor survival following cryopreservation. Two approaches for enhancing survival of in vitro-produced bovine embryos following cryopreservation were evaluated: culture in the presence of hyaluronic acid and alterations in the cytoskeleton through cytochalasin B treatment. The experiment was a 2×2 factorial design to test main effects of hyaluronic acid added to culture at day 5 after insemination (+or−) and cryopreservation treatment (control or cytochalasin B). Embryos used for cryopreservation were blastocysts and expanded blastocysts harvested on day 7 after insemination. Cytochalasin B increased the percent of embryos that re-expanded (P<0.0001) and that hatched following thawing (P<0.05). The hatching percent was 29.6% for embryos treated with cytochalasin B versus 9.1% for control embryos. There was no significant effect of hyaluronic acid on survival although there was a tendency for embryos cultured with hyaluronic acid to have higher percent hatching if not treated with cytochalasin B (12.7% for hyaluronic acid versus 4.5% for control; hyaluronic acid x cytochalasin B interaction; P=0.09). In conclusion, cytochalasin B treatment before freezing improved cryosurvival of bovine embryos produced in vitro. Such a treatment could be incorporated into methods for cryopreservation of bovine embryos provided post-transfer survival is adequate. In contrast, culture with hyaluronic acid was of minimal benefit—the increased cryosurvival in the absence of cytochalasin B was not sufficient to allow an adequate number of embryos to survive.  相似文献   

15.
Fish embryo cryopreservation, which is useful in aquaculture or biodiversity conservation, is still far from being achieved. Structural barriers reduce the entrance of cryoprotectants into embryo compartments. Previous studies demonstrated a better ability for freezing in Arctic species which naturally express antifreeze proteins (AFPs). In this study, AFPs were delivered in early zebrafish embryos by incubation in media containing protein. Their cryoprotective effects were then analyzed. Chilling sensitivity was evaluated at 4 °C and −10 °C. Survival rates significantly increased in embryos incorporating AFPI and kept at −10 °C. To analyze their effects on cryopreservation, 5-somite embryos were vitrified. Incorporation of AFPI reduced the percentage of embryos that collapsed at thawing (14.2% of AFPI-treated embryos and 48.9% of controls). Cellular damage caused by vitrification was assessed after thawing by cell dissociation and further analysis of cell survival in culture (SYBR-14/IP labeling). The percentage of viable cells at thawing ranged from 25 to 50%, considered incompatible with embryo development. Cells recovered from frozen-control embryos did not survive in culture. However, the incorporation of AFPs allowed survival similar to that of cells recovered from non-frozen embryos. Blastomere cryopreservation trials incorporating AFPI in the extender also demonstrated a significant increase in viability after freezing. Our findings demonstrated that delivery of AFPs into zebrafish embryos by incubation in media containing protein at early stages is a simple and harmless method that increases cryoprotection of the cellular compartment. This beneficial effect is also noticed in blastomeres, encouraging their use in further protocols for embryo cryopreservation.  相似文献   

16.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

17.
Rodent transgenesis and human‐assisted reproductive programs involve multistep handling of preimplantation embryos. The efficacy of production and quality of results from conventionally scheduled programs are limited by temporal constraints other than the quality and quantities of embryos per se. The emergence of vitrification, a water ice‐free cryopreservation technique, as a reliable way to arrest further growth of preimplantation embryos, provides an option to eliminate the time constraint. In this article, current and potential applications of cryopreservation to facilitate laboratory animal experiments, colony management, and human‐assisted reproductive programs are reviewed. Carrier devices developed for vitrification in the last two decades are compared with an emphasis on their physical properties that infer cooling rate of samples and sterility assurance. Biological impacts of improved cryopreservation on preimplantation embryos are also discussed. Birth Defects Research (Part C) 90:163–175, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The objective was to determine the effect of cryopreservation by conventional slow controlled cooling (0.5 °C/min) and by vitrification on the presence of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) infectivity associated with frozen-thawed Day 7 bovine embryos. In this study, Day 7 embryos generated by in vitro fertilization (IVF) were exposed in vitro for 1.5 h to BVDV (N = 393) and BHV-1 (N = 242) and subsequently tested before and after cryopreservation for the presence of infectivity. Exposure of embryos to viral agents resulted in 72% of them infected prior to cryopreservation. Stepwise exposure of embryos to cryoprotectants, as well as their removal, substantially reduced the proportion of contaminated embryos (46% vs. 72%, P < 0.05). Overall, both freezing methods reduced the percentage of infectious embryos compared with that of embryos similarly exposed to viruses but not cryopreserved (31% vs. 72%, respectively; P < 0.001). The percentage of embryos with infectious viruses was not significantly higher after vitrification than after slow cooling (38% vs. 22%). In addition, after cryopreservation, a higher percentage (P < 0.002) of embryos exposed to BHV-1 (42%) remained infectious than did embryos exposed to BVDV (24%). In conclusion, cryopreservation reduced the proportion of infected embryos but did not render all of them free from infectious pathogens.  相似文献   

19.
A series of experiments was conducted to test the hypothesis that an improved cryopreservation protocol for pronuclear stage mouse embryos will produce transgenic (Tg) mice by pronuclear gene injection at a rate not significantly different from noncryopreserved embryos. In the first experiment, three cryoprotective agents (CPAs) (dimethyl sulfoxide [DMSO], propylene glycol [PG], ethylene glycol [EG]) and two cryopreservation protocols, currently used for pronuclear embryos, were compared in regard to their ability to maintain post-thaw morphological integrity and in vitro developmental competence. In the second and third experiments, the optimal cryopreservation protocol determined from the first experiment was used to evaluate in vitro developmental competence of pronuclear embryos following green fluorescence protein gene injection and in vivo developmental competence as well as the gene integration rates. Survival (morphological integrity and development to two cells) of embryos cryopreserved in the presence of DMSO was higher (P < 0.05) than those cryopreserved with either PG or EG. Postinjection developmental competence (development to two cells) of cryopreserved CBA, C57B6/JxCBA-F1 and noncryopreserved (control) embryos was not different (P > 0.05). Postinjection blastocyst formation rate of cryopreserved and noncryopreserved C57B6/JxCBA-F1 embryos was similar (P > 0.05); however, noncryopreserved CBA embryos resulted in a higher blastocyst formation than controls (P < 0.05). While there was no difference in the percentage of transgenic fetuses between cryopreserved and control CBA embryos (P > 0.05), cryopreserved C57B6/JxCBA-F1 embryos resulted in lower transgenic fetuses than control (P < 0.05). These results indicate that the use of cryopreserved mouse pronuclear embryos can be a useful and efficient approach to the production of Tg mice.  相似文献   

20.
Cryopreservation of gametes and embryos of non-domestic species.   总被引:1,自引:0,他引:1  
Many species of mammals are threatened or endangered. Methods of assisted reproduction that are being used with increasing frequency to produce offspring of domestic animals and humans are often viewed as offering innovative ways to reproduce non-domestic species as well. Uncounted millions of live young of domestic or laboratory species have been produced from gametes and embryos stored at -70 degrees C or below, sometimes for as long as 25 to 35 yrs. Such methods of cryopreservation are now being applied with increasing frequency and urgency to preserve gametes and embryos of non-domestic and threatened species to establish "genome resource banks" or "frozen zoos." But levels of success to produce live young from such cryopreserved gametes or embryos vary considerably from species to species, as well as from individual to individual. It is sometimes thought that differences among species in fundamental characteristics of their gametes may determine the efficacy of cryopreservation and the production of live young. However, it may not be that ineffective cryopreservation is responsible for low success rates. Rather, the limiting factor may be insufficient information and knowledge of the most basic reproductive biology of such non-domestic species. Even standard methods of cryopreservation may be completely adequate to act as a "temporary" expedient to preserve germplasm of non-domestic species to permit time to acquire a fuller understanding of the biology and behavior of non-domestic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号