首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
菜心(Brassica campestris L.subsp.chinensis Makino var.parachinensis Tsen et Lee)为十字花科芸薹属芸薹种中国白菜亚种中的一个变种,又名“菜薹”。它是我国南方特产蔬菜之一,在蔬菜的周年供应上有重要地位。目前迫切需要培育抗病虫、抗逆和具有其他优良农艺性状的新品种,以提高菜心的  相似文献   

2.
白菜(Brassica campestris Lssp.chinensis Makino)起源于欧洲的野生芸薹,有许多变种和类型,是我国尤其是长江流域及南方各省普遍栽培的重要蔬菜种类之一,在农业生产中占有重要的地位。由于白菜的植株再生频率同其他芸薹属作物相比较低,因此,影响了基因工程技术在白菜品种改良上的应用。虽  相似文献   

3.
Among the major factors affected plant regeneration in Brasica parachinensis, a combination of BAP (bacterial alhaline phosphatase) and NAA, at a concentration of 2 mg/L and 1 mg/L respectively, could raise 26.8% of the regeneration rate. It was also found that Ag- NO3 or ABA when supplemented in the culture medium could increase the plant regeneration rate by 79. 0% and 32.30% respectively, indicating that AgNO3 was superior to ABA as a single factor. With a combination of AgNO3 (4 mg/L) and ABA (0. 5 mg/L) added to MS medium already supplemented with ABA 2.0 mg/L and NAA 1.0 mg/L the authors had achieved remarkable results in frequency increase of 89.0%, 84.3% and 86.0% in three explant varieties of B. parachinensis, viz "49-19', "60D' and "70D', respectively. Among the three explants (cotyledon, hypocotyl and petiole with cotyledon), petiole with cotyledon possessed the highest capability for plant regeneration. In addition the age of seedlings and mode of inoculations also influenced the frequency of plant regeneration.' Histological observation evidenced that the mode of plant regeneration in B. parachinensis was of organogenesis. Adventitions buds derived from the cells of vascular parenchyma at the cut surface of petioles. Mature plants were developed after the plantlets were transferred into the plot.  相似文献   

4.
TA29-barnase基因转化菜心   总被引:1,自引:0,他引:1  
利用根癌农杆菌导入法, 以菜心带柄子叶为外植体, 对TA29-barnase基因转化菜心进行研究。获得转化植株,进行PCR、Southern blotting杂交和半定量RT-PCR检测, 表明目的基因已经整合到转化植株中, 并且目的基因在转基因植株花蕾中得到表达, 但是表达水平在不同转基因植株间存在差别; 转基因植株开花后, 均表现雄性不育, 不能产生花粉或产生没有活力的少量花粉, 自交不能结实; 用未转化植株正常花粉对雄性不育植株进行授粉, 能够正常结实; 保持系(未转化植株)与不育株杂交后代中雄性不育株与可育株的比例为1:1, 在杂交后代植株子叶期, 喷洒10 mg/L的PPT可以完全杀死可育株; 利用其他菜心品种为父本与不育株进行杂交, 获得的F1植株在生长势和产量方面表现优势, 表明开展菜心优势育种具有一定的潜力。  相似文献   

5.
TA29-barnase基因转化菜心   总被引:1,自引:0,他引:1  
利用根癌农杆菌导入法, 以菜心带柄子叶为外植体, 对TA29-barnase基因转化菜心进行研究。获得转化植株,进行PCR、Southern blotting杂交和半定量RT-PCR检测, 表明目的基因已经整合到转化植株中, 并且目的基因在转基因植株花蕾中得到表达, 但是表达水平在不同转基因植株间存在差别; 转基因植株开花后, 均表现雄性不育, 不能产生花粉或产生没有活力的少量花粉, 自交不能结实; 用未转化植株正常花粉对雄性不育植株进行授粉, 能够正常结实; 保持系(未转化植株)与不育株杂交后代中雄性不育株与可育株的比例为1:1, 在杂交后代植株子叶期, 喷洒10 mg/L的PPT可以完全杀死可育株; 利用其他菜心品种为父本与不育株进行杂交, 获得的F1植株在生长势和产量方面表现优势, 表明开展菜心优势育种具有一定的潜力。  相似文献   

6.
提高榨菜离体培养植株再生频率   总被引:11,自引:0,他引:11  
采用榨菜“浙桐1号”品种为材料,以MS为基本培养基,通过对不同植物生长调节剂的组合和不同外植体等主要因素的筛选,大幅度提高了榨菜离体培养植株再生频率。结果表明,2mg/L6.BA 0.2mg/L2,4-D的组合较为适宜,其不定芽再生频率可达50%,且外植体以下胚轴为好:而CPPU和2,4-D的适宜组合为1.5mg/L 0.2mg/L,其不定芽再生频率高达66.67%,最适外植体为带柄子叶。同时,研究结果显示,添加0.25~1mg/L的GA,对榨菜已分化的不定芽的伸长有抑制作用;子叶柄和下胚轴外植体的分化具有极性现象。  相似文献   

7.
A high frequency shoot regeneration system for ornamental kale [Brassica oleracea L. var. acephala (D.C.) Alef.] was firstly established from seedling cotyledon and hypocotyl explants. The ability of cotyledon and hypocotyl to produce adventitious shoots varied depending upon genotype, seedling age and culture medium. The maximum shoot regeneration frequency was obtained when the explants from cv. Nagoya 4-d-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 3 mg dm−3 6-benzylaminopurine (BA) and 0.1 mg dm−3 naphthaleneacetic acid (NAA). The frequency of shoot regeneration was 65.0 % for cotyledons, 76.1 % for hypocotyls; and the number of shoots per explant was 4.3 for cotyledons, 8.2 for hypocotyls. Hypocotyl explants were found to be more responsive for regeneration when compared with cotyledons. Among the 4 cultivars tested, Nagoya showed the best shoot regeneration response. The addition of 3.0 mg dm−3 AgNO3 was beneficial to shoot regeneration. Roots were formed on the base of the shoots when cultured on half-strength MS medium.  相似文献   

8.
This report describes, for the first time, an efficient plant regeneration system for Achillea millefolium L (yarrow), a medicinal plant, via shoot multiplication from shoot-tips and adventitious shoot regeneration from root segments. Higher numbers of shoots were obtained when shoot-tips were cultured on MSMO medium supplemented with 3.0 mg l?1 BA and 0.5 mg l?1 IAA, or 5.0 mg l?1 KIN and 1.0 mg l?1 IBA, producing 17.3 and 17.0 shoots per explant at 100% frequency, respectively. For adventitous shoot regeneration, only root segments developed shoots when cultured on medium containing a combination of 1 mg l?1 TDZ, 0.5 mg l?1 IAA and 0.5 mg l?1 GA3 (18.9 shoots per explant at 100% frequency), while other types of explants (i.e., cotyledons, leaf lamina and petiole segments) or hormonal combinations tested were found ineffective. Regenerated shoots rooted readily on MSMO medium containing different concentrations of IAA, IBA, NAA or 2,4-D, however, NAA at 0.5 mg l?1, or IBA at 0.5 or 1.0 mg l?1 were found to be the most productive. Nearly all of the regenerated plants (98%) survived through the hardening process when the rooted plantlets were kept at 55–65% relative humidity for 2 weeks, which were then planted in pots containing potting soil and kept at 25–35% humidity.  相似文献   

9.
In vitro regeneration techniques have been optimized for seven strains and cultivars of sugar beet (Beta vulgaris L.) bred in Russia. The frequency of shoot regeneration from somatic cells and tissues of sugar beet varies from 10 to 97% depending on the explant type, culture-medium composition, and genotype. The in vitro regeneration potential has been estimated in plants with different genotypes. The effect of medium composition (phytohormones and carbohydrates) on the frequency of the formation of a morphogenic callus competent for plant regeneration has been determined. The effect of the types and concentrations of various cytokines (zeatin, kinetin, and 6-benzylaminopurine) on direct shoot regeneration from cotyledon nodes has been estimated. The culture-medium composition has been optimized for direct shoot regeneration from petioles. The effects of different concentrations of abscisic acid on the frequency of shoot regeneration from a morphogenic callus has been studied. Micropropagation has been used to obtain petiole explants and reproduce the shoots obtained by direct regeneration from cotyledon nodes, petioles, and calluses. Improved shoot-regeneration methods can be used for both agrobacterial and bioballistic genetic transformation of the sugar beet genotypes studied.  相似文献   

10.
以11份萝卜(Raphanus sativus)基因型为材料进行子叶离体培养研究, 筛选出具有较高再生率的基因型进行实验, 考察基因型、外植体类型、激素配比和苗龄等因素对萝卜再生的影响。结果表明: 萝卜离体再生的最佳外植体为全子叶-叶柄, 最适苗龄为4天, 最适培养基为MS+6 mg·L–16-BA+0.05 mg·L–1NAA, 再生率高达86.95%, 再生系数为1.80。该研究为进行萝卜遗传转化实验奠定了良好基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号