首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colonization patterns of oceanic islands are often interpreted through transmarine dispersal. However, in islands with intense human activities and unclear geological history, this inference may be inappropriate. Cyprus is such an island, whose geotectonic evolution has not been clarified yet to the desired level for biogeographical reconstructions, leaving the questions of ‘how the Cypriote biota arrived’ and ‘does the dispersal have the formative role in patterns of its diversification’ unanswered. Here, we address these issues through a reconstruction of the evolutionary history of six herptiles (Ablepharus budaki, Ophisops elegans, Acanthodactylus schreiberi, Telescopus fallax, Pelophylax cf. bedriagae, and Hyla savignyi) by means of mitochondrial DNA (cytochrome b and 16S rRNA), applying a Bayesian phylogenetic, biogeographical, and chronophylogenetic analyses. The phylogeographical analyses show that the colonization history of those species in Cyprus started in the late Miocene and extended into the Pliocene and Pleistocene, with geodispersal, transmarine dispersal, and human‐mediated dispersal having their share in shaping the diversification of Cypriote herptiles. The revealed patterns could be divided into three biogeographical categories: old colonizers that arrived in Cyprus during the late Miocene or early Pliocene either by a land bridge (geodispersal) which connected Cyprus with the mainland or by transmarine dispersal, younger colonizers that reached the island through transmarine dispersal from the Middle East, and new settlers that arrived through human‐induced (voluntary or not) introductions. This work advances our knowledge of the biogeography of Cyprus and highlights the need to consider both geo‐ and transmarine dispersal when dealing with islands whose associations do not have a straightforward interpretation. © 2013 The Linnean Society of London  相似文献   

2.
Incorporating genomic data sets into landscape genetic analyses allows for powerful insights into population genetics, explicitly geographical correlates of selection, and morphological diversification of organisms across the geographical template. Here, we utilize an integrative approach to examine gene flow and detect selection, and we relate these processes to genetic and phenotypic population differentiation across South‐East Asia in the common sun skink, Eutropis multifasciata. We quantify the relative effects of geographic and ecological isolation in this system and find elevated genetic differentiation between populations from island archipelagos compared to those on the adjacent South‐East Asian continent, which is consistent with expectations concerning landscape fragmentation in island archipelagos. We also identify a pattern of isolation by distance, but find no substantial effect of ecological/environmental variables on genetic differentiation. To assess whether morphological conservatism in skinks may result from stabilizing selection on morphological traits, we perform FSTPST comparisons, but observe that results are highly dependent on the method of comparison. Taken together, this work provides novel insights into the manner by which micro‐evolutionary processes may impact macro‐evolutionary scale biodiversity patterns across diverse landscapes, and provide genomewide confirmation of classic predictions from biogeographical and landscape ecological theory.  相似文献   

3.
Most invasive species established in Europe originate from either Asia or North America, but little is currently known about the potential of the Anatolian Peninsula (Asia Minor) and/or the Near East to constitute invasion sources. Mediterranean forests are generally fragile ecosystems that can be threatened by invasive organisms coming from different regions of the Mediterranean Basin, but for which historical data are difficult to gather and the phylogeographic patterns are still poorly understood for most terrestrial organisms. In this study, we characterized the genetic structure of Megastigmus schimitscheki, an invasive seed‐feeding insect species originating from the Near East, and elucidated its invasion route in South‐eastern France in the mid 1990s. To disentangle the evolutionary history of this introduction, we gathered samples from the main native regions (Taurus Mountains in Turkey, Lebanon and Cyprus) and from the invaded region that we genotyped using five microsatellite markers and for which we sequenced the mitochondrial Cytochrome Oxidase I gene. We applied a set of population genetic statistics and methods, including approximate Bayesian computation. We proposed a detailed phylogeographic pattern for the Near East populations, and we unambiguously showed that the French invasive populations originated from Cyprus, although the available historical data strongly suggested that Turkey could be the most plausible source area. Interestingly, we could show that the introduced populations were founded from an extremely restricted number of individuals that realized a host switch from Cedrus brevifolia to C. atlantica. Evolutionary hypotheses are discussed to account for this unlikely scenario.  相似文献   

4.
Aim The Mediterranean Basin is a centre of radiation for numerous species groups. To increase our understanding of the mechanisms underlying speciation and radiation events in this region, we assessed the phenotypic variability within the Pipistrellus pipistrellus–pygmaeus–hanaki species complex. Although bats form the second largest mammalian order, studies of insular evolution in this group are scarce. We approached this problem from a microevolutionary perspective and tested for the recurrence of the insular syndrome. Location The Mediterranean Basin, with a special focus on isolated populations from Corsica, the Maghreb, Cyprus, Cyrenaica and Crete. Methods Phenotypic variability was assessed by cranial morphometrics using the coordinates of 41 3D landmarks and associated geometric‐morphometric methods. We analysed 125 specimens representing all of the lineages in the species complex. Differences between taxa and between insular and continental populations in cranial size, shape, form and allometries were tested using analyses of variance and visualized using boxplots and canonical variate analysis. Relationships between molecular data from a previous study (cytochrome b sequences) and morphometric data were tested with co‐inertia analyses (RV test) and multivariate regressions. Results The three species were relatively well differentiated in cranial size and shape, and each species showed a significant amount of inter‐population variability. Comparisons of pairs of insular versus continental populations revealed heterogeneities in cranial patterns among island phenotypes, suggesting no recurrent insular syndrome. Molecular and phenotypic traits were correlated, except for molecular and lateral cranium shape. Main conclusions The Pipistrellus pipistrellus pygmaeus hanaki species complex exhibits phenotypic variability as a result of the fragmentation of its distribution (especially on islands), its phylogenetic and phylogeographic history and, most probably, other evolutionary factors that were not investigated in this study. We found no recurrent pattern of evolution on islands, indicating that site‐specific factors play a prevailing role on Mediterranean islands. The correlation between molecular and phenotypic data is incomplete, suggesting that factors other than phylogenetic relationships, potentially connected with feeding ecology, have played a role in shaping cranial morphology in this species complex.  相似文献   

5.
Historical events, habitat preferences, and geographic barriers might result in distinct genetic patterns in insular versus mainland populations. Comparison between these two biogeographic systems provides an opportunity to investigate the relative role of isolation in phylogeographic patterns and to elucidate the importance of evolution and demographic history in population structure. Herein, we use a genotype‐by‐sequencing approach (GBS) to explore population structure within three species of mastiff bats (Molossus molossus, M. coibensis, and M. milleri), which represent different ecological histories and geographical distributions in the genus. We tested the hypotheses that oceanic straits serve as barriers to dispersal in Caribbean bats and that isolated island populations are more likely to experience genetic drift and bottlenecks in comparison with highly connected ones, thus leading to different phylogeographic patterns. We show that population structures vary according to general habitat preferences, levels of population isolation, and historical fluctuations in climate. In our dataset, mainland geographic barriers played only a small role in isolation of lineages. However, oceanic straits posed a partial barrier to the dispersal for some populations within some species (M. milleri), but do not seem to disrupt gene flow in others (M. molossus). Lineages on distant islands undergo genetic bottlenecks more frequently than island lineages closer to the mainland, which have a greater exchange of haplotypes.  相似文献   

6.
Genetic and phenotypic mosaics, in which various phenotypes and different genomic regions show discordant patterns of species or population divergence, offer unique opportunities to study the role of ancestral and introgressed genetic variation in phenotypic evolution. Here, we investigated the evolution of discordant phenotypic and genetic divergence in a monophyletic clade of four songbird taxa—pied wheatear (O. pleschanka), Cyprus wheatear (Oenanthe cypriaca), and western and eastern subspecies of black‐eared wheatear (O. h. hispanica and O. h. melanoleuca). Phenotypically, black back and neck sides distinguish pied and Cyprus wheatears from the white‐backed/necked black‐eared wheatears. Meanwhile, mitochondrial variation only distinguishes western black‐eared wheatear. In the absence of nuclear genetic data, and given frequent hybridization among eastern black‐eared and pied wheatear, it remains unclear whether introgression is responsible for discordance between mitochondrial divergence patterns and phenotypic similarities, or whether plumage coloration evolved in parallel. Multispecies coalescent analyses of about 20,000 SNPs obtained from RAD data mapped to a draft genome assembly resolve the species tree, provide evidence for the parallel evolution of colour phenotypes and establish western and eastern black‐eared wheatears as independent taxa that should be recognized as full species. The presence of the entire admixture spectrum in the Iranian hybrid zone and the detection of footprints of introgression from pied into eastern black‐eared wheatear beyond the hybrid zone despite strong geographic structure of ancestry proportions furthermore suggest a potential role for introgression in parallel plumage colour evolution. Our results support the importance of standing heterospecific and/or ancestral variation in phenotypic evolution.  相似文献   

7.
The Mediterranean common shrub Pistacia lentiscus is distributed in a wide range of habitats along the climatic gradient in Israel. We studied the factors that may shape its morphological, physiological, and genetic differentiation. We examined the phenotypic and molecular genetic variability among and within the six Israeli populations as correlated with the local environmental conditions. The genetic structure of the shrub on the island of Cyprus was also examined. Plant morphological parameters correlated significantly with the local environmental conditions, especially with the annual precipitation and temperature. Gene diversity did not differ significantly among locations, and, hence, no differentiation among Israeli populations or between populations in Israel and Cyprus was found. The major part of the molecular variance (69%) was found within the populations, 22% of the variance was found between Israel and Cyprus and 9% among the populations within the region. Gene flow estimates among all the tested populations were high with no indication for the isolation by distance. We did not find any pattern of ecologically related genetic differentiation; hence, the morphological and physiological differences are probably due to phenotypic plasticity. It seems that the ability of P. lentiscus to express the different phenotypes in response to the varying conditions in the Mediterranean region is an adaptive trait in a species that is characterized by intensive gene flow.  相似文献   

8.
Climate‐mediated evolution plays an integral role in species migration and range expansion. Gaining a clearer understanding of how climate affects demographic history and adaptation provides fundamental insight into the generation of intra‐ and interspecific diversity. In this study, we used the natural colonization of the green anole (Anolis carolinensis) from the island of Cuba to mainland North America to investigate the role of evolution at the niche, phenotypic and genetic levels after long‐term establishment in a novel environment. The North American green anole occupies a broader range of thermal habitats than its Cuban sister species. We documented niche expansion in the mainland green anole, mediated primarily through adaptation to winter temperatures. Common garden experiments strongly suggest a genetic component to differences in thermal performance found between populations in different temperature regimes. Analysis of geographic variation in population structure based on 53 486 single nucleotide variants from RAD loci revealed increased genetic isolation between populations in different vs. similar thermal environments. Selection scans for environment‐allele correlations reveal 19 genomic loci of known function that may have played a role in the physiological adaptation of A. carolinensis to temperate environments on the mainland.  相似文献   

9.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

10.
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South‐East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South‐East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South‐East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South‐East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South‐East Asia during mid‐Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the ‘genomic islands’ scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid‐Pleistocene.  相似文献   

11.
Local environments can act as selective agents on some characteristics of birds’ songs, whereas other song traits may not reflect local genetic adaptation. Geographic variation in songs of two Australian bird species (red‐capped robins Petroica goodenovii, western gerygones Gerygone fusca) was studied to examine one component of the ‘habitat‐dependent selection’ hypothesis. This hypothesis suggests that: (1) the detailed spectral characteristics of male songs are an evolved response to local habitat conditions affecting signal propagation and detection and (2) parallel evolution of other fitness traits sets up the potential for assortative mating by female choice. To examine the first part of the hypothesis, I made comparisons among widespread mainland populations and an island population using two levels of analysis: a typological analysis of song morphology (phonology: notes, syllables, syntax, temporal pattern, repertoires) and a spectral analysis of acoustic characteristics of songs (mean frequency, Wiener entropy, frequency modulation) using an automated procedure of feature extraction (Sound Analysis Pro). Spectral analysis was also used to extract values of the same acoustic features from the background sound environment of each recorded population. The typological analysis revealed no differences among mainland populations of either species, but large differences between mainland songs and those on the island. In contrast, the spectral analysis revealed acoustic divergence among populations, both mainland and island. For both species, Wiener entropy of songs correlated negatively with that of the ambient sound environment, consistent with predictions of the habitat‐dependent selection hypothesis of environmental selection on signal design.  相似文献   

12.
  • Oceanic islands are dynamic settings that often promote within‐island patterns of strong population differentiation. Species with high colonisation abilities, however, are less likely to be affected by genetic barriers, but island size may impact on species genetic structure regardless of dispersal ability.
  • The aim of the present study was to identify the patterns and factors responsible for the structure of genetic diversity at the island scale in Phoenix canariensis, a palm species with high dispersal potential. To this end, we conducted extensive population sampling on the three Canary Islands where the species is more abundant and assessed patterns of genetic variation at eight microsatellite loci, considering different within‐island scales.
  • Our analyses revealed significant genetic structure on each of the three islands analysed, but the patterns and level of structure differed greatly among islands. Thus, genetic differentiation fitted an isolation‐by‐distance pattern on islands with high population densities (La Gomera and Gran Canaria), but such a pattern was not found on Tenerife due to strong isolation between colonised areas. In addition, we found a positive correlation between population geographic isolation and fine‐scale genetic structure.
  • This study highlights that island size is not necessarily a factor causing strong population differentiation on large islands, whereas high colonisation ability does not always promote genetic connectivity among neighbouring populations. The spatial distribution of populations (i.e. landscape occupancy) can thus be a more important driver of plant genetic structure than other island, or species′ life‐history attributes.
  相似文献   

13.
We analyzed the population genetic structure and demographic history of 20 Lymantria dispar populations from Far East Asia using microsatellite loci and mitochondrial genes. In the microsatellite analysis, the genetic distances based on pairwise FST values ranged from 0.0087 to 0.1171. A NeighborNet network based on pairwise FST genetic distances showed that the 20 regional populations were divided into five groups. Bayesian clustering analysis (K = 3) demonstrated the same groupings. The populations in the Korean Peninsula and adjacent regions, in particular, showed a mixed genetic pattern. In the mitochondrial genetic analysis based on 98 haplotypes, the median‐joining network exhibited a star shape that was focused on three high‐frequency haplotypes (Haplotype 1: central Korea and adjacent regions, Group 1; Haplotype 37: southern Korea, Group 2; and Haplotype 90: Hokkaido area, Group 3) connected by low‐frequency haplotypes. The mismatch distribution dividing the three groups was unimodal. In the neutral test, Tajima's D and Fu's FS tests were negative. We can thus infer that the Far East Asian populations of L. dispar underwent a sudden population expansion. Based on the age expansion parameter, the expansion time was inferred to be approximately 53,652 years before present (ybp) for Group 1, approximately 65,043 ybp for Group 2, and approximately 76,086 ybp for Group 3. We propose that the mixed genetic pattern of the inland populations of Far East Asia is due to these expansions and that the inland populations of the region should be treated as valid subspecies that are distinguishable from other subspecies by genetic traits.  相似文献   

14.
For the first time, microsatellite loci were used to study the genetic structure in Alectoris chukar cypriotes. Four of the ten tested microsatellite loci were found to be polymorphic in 33 individuals from four regions of Cyprus. The differentiation test between all the pairs of samples gave non-differentiation exact P values in every case (P>0.05). The posterior probability distribution on the number of source populations indicated only one population (P=0.977); also, a high Bayes factor value (130.020) was obtained. Posterior co-assignment probabilities (measures of similarity) for all pairs of individuals ranged from 0.984 to 1. The global FIS value was not found to be significant. A recent bottleneck of the Cypriot total partridge population is suggested and this is supported by a significant Wilcoxon test (P=0.031) under the Infinite Alleles Model (IAM) and shifted mode in the alleles frequencies distribution. The results suggest that all the individuals studied belong to only one randomly mating (panmictic) population, with low genetic variation and evidence of recent effective population size reduction (genetic bottleneck). A big hunting pressure exists on the island and about 200,000 captive-bred birds are released every year; these individuals are descendant from a small number of eggs collected in a small area of Cyprus in 1986 and this founder effect could explain the existence of a bottleneck and the low genetic variability.  相似文献   

15.
Previous studies of the microarthropods of Marion Island, Southern Ocean, documented high mitochondrial COI (cytochrome c oxidase subunit I) haplotype diversity and significant genetic structure, which were ascribed to landscape subdivision. In this paper we revisit these ideas in light of new geomorphological evidence indicating a major lineament orientated along N26.5°E. Using the microarthropod Halozetes fulvus, we test the hypothesis that the eastern and western sides of the island show different population genetic patterns, corresponding to the previously unrecognized geological separation of these regions, and perhaps also with differences in climates across the island and further landscape complexity. Mitochondrial COI data were collected for 291 H. fulvus individuals from 30 localities across the island. Notwithstanding our sampling effort, haplotype diversity was under‐sampled as indicated by rarefaction analyses. Overall, significant genetic structure was found across the island as indicated by ΦST analyses. Nested clade phylogeographical analyses suggested that restricted gene flow (with isolation‐by‐distance) played a role in shaping current genetic patterns, as confirmed by Mantel tests. At the local scale, coalescent modelling revealed two different genetic patterns. The first, characterizing populations on the south‐western corner of the island, was that of low effective population size and high gene flow. The converse was found on the eastern side of Marion Island. Taken together, substantial differences in spatial genetic structure characterize H. fulvus populations across Marion Island, in keeping with the hypothesis that the complex history of the island, including the N26.5°E geological lineament, has influenced population genetic structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 131–145.  相似文献   

16.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

17.
Aim To compare patterns of potential and realized dispersal in ecologically similar and phylogenetically related amphidromous shrimps (Atyidae) in continental and island‐dominated landscapes. Location Eastern Australia and the Caribbean region. Methods Population genetic and phylogeographic analyses of mitochondrial DNA data for Australatya striolata from eastern Australia (a continental landscape) and Atya scabra from the Caribbean (an island‐dominated landscape). Results Australatya striolata contained two highly divergent genetic lineages in eastern Australia, corresponding to the disjunct northern and southern populations, respectively. These lineages probably represent allopatric cryptic species, both of which were found to have genetically homogeneous population structures within their regions of occurrence. Atya scabra was genetically homogeneous throughout the Caribbean. Recent population expansions were detected for Atya scabra in the Caribbean, but not for northern or southern Australatya striolata. Main conclusions The findings of this study are consistent with previously reported patterns of genetic population structure in amphidromous species in both continental and island‐dominated landscapes, suggesting that potential for widespread dispersal is typically matched by realized patterns of panmixia. We therefore raise the hypothesis that landscape setting (i.e. continent or island‐dominated) does not influence dispersal patterns in amphidromous species. Further studies, especially of population genetic patterns of amphidromous species on continents, are needed to test this idea. Interestingly, results of the genetic neutrality tests led us to hypothesize that demographic and drift‐mutation equilibrium is attainable although not always evident for amphidromous species on continents, but is not attainable for those species distributed across island settings.  相似文献   

18.
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.  相似文献   

19.
Striking genetic structure among marine populations at small spatial scales is becoming evident with extensive molecular studies. Such observations suggest isolation at small scales may play an important role in forming patterns of genetic diversity within species. Isolation‐by‐distance, isolation‐by‐environment and historical priority effects are umbrella terms for a suite of processes that underlie genetic structure, but their relative importance at different spatial and temporal scales remains elusive. Here, we use marine lakes in Indonesia to assess genetic structure and assess the relative roles of the processes in shaping genetic differentiation in populations of a bivalve mussel (Brachidontes sp.). Marine lakes are landlocked waterbodies of similar age (6,000–10,000 years), but with heterogeneous environments and varying degrees of connection to the sea. Using a population genomic approach (double‐digest restriction‐site‐associated DNA sequencing), we show strong genetic structuring across populations (range FST: 0.07–0.24) and find limited gene flow through admixture plots. At large spatial scales (>1,400 km), a clear isolation‐by‐distance pattern was detected. At smaller spatial scales (<200 km), this pattern is maintained, but accompanied by an association of genetic divergence with degree of connection. We hypothesize that (incomplete) dispersal barriers can cause initial isolation, allowing priority effects to give the numerical advantage necessary to initiate strong genetic structure. Priority effects may be strengthened by local adaptation, which the data may corroborate by showing a high correlation between mussel genotypes and temperature. Our study indicates an often‐neglected role of (evolution‐mediated) priority effects in shaping population divergence.  相似文献   

20.
Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo‐West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef‐building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation‐by‐distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15–21% of the observed genetic variation compared to between‐island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species‐rich Coral Triangle. However, for Ahyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast‐spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号