首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Ghrelin increases anxiety-like behavior and memory retention in rats   总被引:13,自引:0,他引:13  
Ghrelin is a peptide found in the hypothalamus and stomach that stimulates food intake and whose circulating concentrations are affected by nutritional state. Very little is known about other central behavioral effects of ghrelin, and thus, we investigated the effects of ghrelin on anxiety and memory retention. The peptide was injected intracerebroventricularly in rats and we performed open-field, plus-maze, and step-down tests (inhibitory avoidance). The administration of ghrelin increased freezing in the open field and decreased the number of entries into the open spaces and the time spent on the open arms in the plus-maze, indicating an anxiogenic effect. Moreover, the peptide increased in a dose-dependent manner the latency time in the step-down test. A rapid and prolonged increase in food intake was also observed. Our results indicate that ghrelin induces anxiogenesis in rats. Moreover, we show for the first time that ghrelin increases memory retention, suggesting that the peptide may influence processes in the hippocampus.  相似文献   

2.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

3.
Obestatin has recently been discovered in the rat stomach. As for ghrelin, the 23-amino acid obestatin is also derived from post-translational processing of the prepro-ghrelin gene but seems to have opposite effects on feed intake. In avian species, ghrelin is mainly present in the proventriculus and decreases feed intake, as opposed to its orexigenic properties in mammals. An obestatin-like sequence was also found in the avian ghrelin precursor protein but the potential involvement of this peptide in appetite regulation of chickens is unclear. We therefore investigated the effects of a single peripheral administration of this predicted "chicken" obestatin peptide on voluntary feed intake of 7- to 9-day-old meat-type and layer-type chicks. "Chicken" obestatin was injected intraperitoneally or intravenously at a dose of 1 nmol or 10 nmol/100 g body weight and feed intake was measured up to 4 h post injection. None of these treatments did reveal any effect of the putative "chicken" obestatin on appetite of either meat-type of layer-type chicks. Furthermore, "chicken" obestatin also failed to affect the in vitro contractility of muscle strips from crop and proventriculus. In conclusion, in the given experimental settings, the putative "chicken" obestatin has indistinctive physiological effects on feed intake and in vitro muscle contractility of gut segments, and hence its functional properties in ingestive behavior of avian species remain obscure.  相似文献   

4.
Proghrelin, the precursor of the orexigenic and adipogenic peptide hormone ghrelin, is synthetized in endocrine (A-like) cells in the gastric mucosa. During its cellular processing, proghrelin gives rise to the 28-amino acid peptide desacyl ghrelin, which after octanoylation becomes active acyl ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets of mice and rats. Surprisingly, acyl ghrelin and obestatin had almost identical effects in that they stimulated the secretion of glucagon and inhibited that of PP and somatostatin from both mouse and rat islets. Obestatin inhibited insulin secretion more effectively than acyl ghrelin. In mouse islets, acyl ghrelin inhibited insulin secretion at low doses and stimulated at high. In rat islets, acyl ghrelin inhibited insulin secretion in a dose-dependent manner but the IC(50) for the acyl ghrelin-induced inhibition of insulin release was 7.5 x 10(-8) M, while the EC(50) and IC(50) values, with respect to stimulation of glucagon release and to inhibition of PP and somatostatin release, were in the 3 x 10(-12)-15 x 10(-12) M range. The corresponding EC(50) and IC(50) values for obestatin ranged from 5 x 10(-12) to 20 x 10(-12) M. Desacyl ghrelin per se did not affect islet hormone secretion. However, at a ten times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant concentrations; with obestatin this was the case also for insulin secretion. The combination of obestatin, acyl ghrelin and desacyl ghrelin in concentrations and proportions similar to those found in plasma resulted in effects that were indistinguishable from those induced by obestatin alone. From the data it seems that the effects of endogenous, circulating acyl ghrelin may be overshadowed by obestatin or blunted by desacyl ghrelin.  相似文献   

5.
Obestatin is a bioactive peptide encoded by the same gene that encodes ghrelin. Our aim was to investigate the effect of obestatin on insulin secretion. We evaluated the effects of obestatin on insulin secretion from rat islet cells which had been incubated overnight in the presence of 8.3, 11.1, and 22.2 mmol/l of glucose. In vivo, the serum levels of glucose and insulin were measured 0, 1, 5, 10, 20, 40, and 60 min after the intravenous administration of saline or glucose (1 g/kg), with or without obestatin, and the area under the 60 min curve of insulin concentration (AUCinsulin) was calculated. Obestatin (0.01-100 nmol/l) inhibited insulin secretion from rat islets in a dose-dependent fashion. In vivo, when administered intravenously to rats together with glucose, obestatin (10, 50, and 250 nmol/kg) inhibited both the rapid 1-min insulin response and the AUCinsulin in a dose-dependent fashion. Our data demonstrate that under glucose-stimulated conditions, exogenous obestatin acts as a potent inhibitor of insulin secretion in anaesthetized rats in vivo as well as in cultured islets in vitro.  相似文献   

6.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

7.
Obestatin: its physicochemical characteristics and physiological functions   总被引:1,自引:0,他引:1  
Tang SQ  Jiang QY  Zhang YL  Zhu XT  Shu G  Gao P  Feng DY  Wang XQ  Dong XY 《Peptides》2008,29(4):639-645
Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene with ghrelin, was initially reported to reduce food intake, body weight gain, gastric emptying and suppress intestinal motility through an interaction with the orphan receptor GPR39. However, recently reports have shown that above findings had been questioned by several groups. Further studies explained that obestatin was involved in inhibiting thirst and anxiety, improving memory, regulating sleep, affecting cell proliferation, and increasing the secretion of pancreatic juice enzymes. We also identified that obestatin could stimulate piglet liver and adipose cell proliferation, and inhibit the secretion of IGF-I. According to the controversy over the effects and the cognate ligand of obestatin, here we provide the latest review on the structure, distribution and physiological functions of obestatin.  相似文献   

8.
Ghrelin is a gut peptide produced mainly by stomach, well known to induce appetite stimulatory actions. Obestatin, a recently identified peptide derived from preproghrelin, was initially described to antagonize stimulatory effect of ghrelin on food intake. The postprandial response of obestatin and its relationship with ghrelin in humans remains unknown. We therefore investigated the postprandial response of obestatin and total ghrelin, acyl and desacyl ghrelin and neuropeptide Y (NPY) to a high-carbohydrate breakfast (1 604 kJ) in eight healthy women (age: 24.2+/-0.82 years; BMI 21.6+/-0.61 kg/m(2)). Blood samples were collected before the meal, and 30, 60, 90, 120 and 150 min after the breakfast consumption. Postprandial plasma obestatin concentrations significantly decreased compared with preprandial levels as well as total ghrelin concentrations and reached the lowest values 90 and 120 min after the meal consumption, respectively (p<0.05). Plasma acyl and desacyl ghrelin concentrations decreased after the breakfast and reached lowest values in 30 and 60 min, respectively (p<0.05). Plasma NPY concentrations were lower than preprandial levels 90 and 150 min after consuming breakfast (p<0.05). In conclusion, we demonstrated in healthy young women that plasma obestatin concentrations decrease similarly to ghrelin after a high-carbohydrate breakfast.  相似文献   

9.
Obestatin is a novel peptide encoded by the ghrelin precursor gene; however, its effects on gastrointestinal motility remain controversial. Here we have examined the effects of obestatin on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats. We examined the effects of intravenous (IV) injection of obestatin on the percentage motor index (%MI) and phase III-like contractions in the antrum and duodenum. The brain mechanism mediating the action of obestatin on gastroduodenal motility and the involvement of vagal afferent pathway were also examined. Between 30 and 90 min after IV injection, obestatin decreased the %MI in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats given 3 g of chow after 18 h of fasting. Immunohistochemical analysis demonstrated that corticotropin-releasing factor- and urocortin-2-containing neurons in the paraventricular nucleus in the hypothalamus were activated by IV injection of obestatin. Intracerebroventricular injection of CRF type 1 and type 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Capsaicin treatment blocked the effects of obestatin on duodenal motility but not on antral motility. Obestatin failed to antagonize ghrelin-induced stimulation of gastroduodenal motility. These results suggest that, in the fed state, obestatin inhibits motor activity in the antrum and duodenum and that CRF type 1 and type 2 receptors in the brain might be involved in these effects of obestatin on gastroduodenal motility.  相似文献   

10.
Obestatin, a recently discovered 23-amino acid peptide, is involved in the regulation of appetite and body weight in antagonistic fashion to ghrelin, both deriving from a common precursor peptide. Ghrelin was shown to be associated with insulin resistance, which may also affect obestatin. We investigated the association between insulin resistance and plasma concentrations of obestatin and ghrelin in nondiabetic individuals with high (IS; n = 18, 13 females and 5 males, age 47 +/- 2 yr, BMI = 25.5 +/- 0.9 kg/m(2)) and low (IR; n = 18, 12 females and 6 males, age 45 +/- 2 yr, P = 0.49, BMI = 27.5 +/- 1.1 kg/m(2), P = 0.17) insulin-stimulated glucose disposal (M), measured by 2-h hyperinsulinemic (40 mU.min(-1).m(-2)) isoglycemic clamp tests. M(100-120 min) was higher in IS (10.7 +/- 0.7) than in IR (4.4 +/- 0.2 mg.min(-1).kg(-1), P < 10(-9)), whereas insulin-dependent suppression of free fatty acids (FFA) in plasma was reduced in IR (71 +/- 6% vs. IS: 82 +/- 5%, P < 0.02). In both groups, plasma ghrelin concentrations were comparable at fasting and similarly reduced by 24-28% during insulin infusion. IR had lower fasting plasma obestatin levels (383 +/- 26 pg/ml vs. IS: 469 +/- 23 pg/ml, P < 0.02). Clamp insulin infusion reduced plasma obestatin to approximately 81% of basal values in IS (P < 0.00002), but not in IR. Fasting plasma obestatin was correlated positively with M (r = 0.34, P = 0.04), HDL cholesterol (r = 0.45, P = 0.01), and plasma ghrelin concentrations (r = 0.80, P < 0.000001) and negatively with measures of adiposity, plasma FFA during clamp (r = -0.42, P < 0.01), and systolic blood pressure (r = -0.33, P < 0.05). In conclusion, fasting plasma concentrations of obestatin, but not of ghrelin, are reduced in insulin resistance and are positively associated with whole body insulin sensitivity in nondiabetic humans. Furthermore, plasma obestatin is reduced by insulin in insulin-sensitive but not in insulin-resistant persons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号