首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
史加勉  王聪  郑勇  高程 《菌物学报》2023,42(1):118-129
工业革命以来,人类活动输入到生态系统中的氮迅速增加,已突破地球所能承受的氮循环阈值。过量氮沉降会造成生物多样性丧失等一系列危害,严重影响生态系统结构和功能。丛枝菌根(AM)真菌能够与大约70%-80%的陆地植物种类形成共生关系,在宿主植物养分吸收、抵抗外界不良环境压力、群落动态和物种共存、生物地球化学循环等方面具有重要的作用。探究AM真菌对氮沉降的响应对认识和把握菌根真菌缓解氮沉降的负面后果,维持生态系统的结构和功能具有重要意义。本文综述了AM真菌的形态结构、物种多样性和群落组成等对氮沉降的响应机制。前人研究表明氮沉降通常降低AM真菌的根系定殖率,减少根外菌丝密度和土壤孢子密度,改变菌丝生长的时间动态;降低AM真菌多样性,改变AM真菌群落组成。氮沉降主要通过缓解植物氮限制、降低植物对菌根的依赖性、减少植物对菌根的碳分配、改变根系和土壤中菌根生物量比率、在植物根内维持稳定的菌根真菌组成作为应对未来扰动的“保险”、改变土壤资源有效性及土壤酸度等直接和间接途径影响AM真菌结构和功能。我们建议在未来研究中整合多组学手段、开展学科交叉,聚焦复杂的生物互作体系对氮沉降的响应机制,以及AM真菌对氮沉降响应的生态后果。  相似文献   

2.
在陆地生态系统中,土壤、植被与大气之间有着可观的碳交换通量,陆地生态系统碳循环也和全球气候变化密切关联。菌根真菌可与绝大多数陆地植物建立菌根共生关系,通过矿质养分-碳交换连接起生态系统地上与地下部分,深度参与和影响陆地生态系统的碳循环过程。该文从碳的输入,土壤有机质的形成、稳定和分解等4个关键环节分别论述了菌根真菌在陆地生态系统碳循环中的作用。研究表明,菌根真菌在陆地生态系统碳的输入过程中扮演关键角色,其通过改善植物矿质营养,参与植物逆境响应,影响植物的光合作用强度,以及调控植物多样性与生产力之间的关系等多种途径,维持或提高植被初级生产力;大气中的CO2被植物固定后,一部分碳经由菌丝网络输送到土壤中,随后经微生物的分解和转化,与矿物结合或被团聚体包裹而被稳定在土壤中;同时,菌根真菌通过影响根际激发效应和菌丝际生物化学过程,如分泌特定胞外酶,与菌丝际微生物互作,驱动芬顿反应,以及与腐生微生物竞争等,调控土壤有机质的分解和转化过程。考虑到菌根真菌对环境和气候变化的敏感性,该文还探讨了全球变化因子对菌根真菌介导的碳循环过程的影响。最后,该文对未来研究方向进行了展望,并提...  相似文献   

3.
丛枝菌根共生体的氮代谢运输及其生态作用   总被引:4,自引:0,他引:4  
丛枝菌根真菌能与80%的陆生维管植物形成互惠共生关系,共生体的存在对促进植物营养吸收和提高抗逆性具有重要意义.丛枝菌根真菌从宿主植物获取其光合产物碳水化合物的同时,通过外生菌丝吸收各种氮源,有效增强了宿主植物对氮素的吸收,以及氮在植物居群和群落水平上的交流,改善了植物营养代谢,增强了植物应对外界环境胁迫的能力.而共生体对氮的吸收、转运,以及氮从真菌到宿主植物的传输、代谢机制至今仍有许多问题亟待解决.本文综述了当前丛枝菌根共生体中氮传输代谢的主要机制,以及碳、磷对共生体氮传输代谢的影响;从群落和生态系统水平,简要阐述了丛枝菌根真菌在植物中氮分配的作用和对宿主植物的生态学意义,并提出共生体中氮代谢的一些需要深入研究的问题.
  相似文献   

4.
丛枝菌根网络的生态学功能研究进展   总被引:2,自引:2,他引:0  
王茜  王强  王晓娟  张亮  金樑 《生态学杂志》2015,26(7):2192-2202
丛枝菌根(AM)真菌是陆地生态系统中重要的土壤微生物之一.其在土壤生态系统中延伸出的根外菌丝,可以通过菌丝融合的方式形成丛枝菌根网络(AMN).AMN在土壤生态系统中发挥着重要功能:一方面,AMN可以改变土壤的理化性质,其根外菌丝分泌物可以影响土壤微生物生存的微环境,进而改变土壤微生物的群落组成;另一方面,AM真菌的根外菌丝可以吸收土壤养分,并通过AMN将吸收的营养物质在宿主植物间进行分配,调节植物物种之间的竞争关系.为了全面阐述AMN在生态系统中的功能,本文围绕最新的AMN研究成果,探究AM真菌根外菌丝在土壤中相互融合的机制、AMN影响土壤微生物的数量和组成、调节植物群落的生态学机理,以及AMN调节地下资源、植物种内和种间竞争、影响植物群落的多样性和丰富度等生态系统功能.阐述在全球变化过程中AMN与大气氮沉降、CO2浓度升高以及温度升高的相关性,探究其在维持生态系统稳定性中的作用,并对本领域未来的发展方向和应用前景进行展望.  相似文献   

5.
丛枝菌根共生体中碳、氮代谢及其相互关系   总被引:1,自引:1,他引:0  
丛枝菌根共生体(arbuscular mycorrhiza, AM)是丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物之间形成的互惠共生形式.共生体中的碳、氮交换和代谢影响着宿主植物和共生真菌之间的营养平衡和资源重新分配,在物质和能量循环中发挥着重要作用.宿主植物光合固定的碳输送到真菌内,并且分解和释放真菌所需的生命物质和能量,包括促进孢子萌发、菌丝生长和提高氮等营养元素的吸收;而菌根真菌利用宿主植物提供的碳骨架和能量,发生氮的转化和运输,最终传递给宿主植物供其利用.本文综述了丛枝菌根共生体中碳、氮传输和代谢的主要模式,碳、氮的交互影响和调控机制,以促进丛枝菌根在可持续农业和生态系统中的应用.  相似文献   

6.
菌根真菌与植物共生营养交换机制研究进展   总被引:4,自引:0,他引:4  
菌根是陆地生态系统普遍存在的、由土壤中的菌根真菌侵染宿主植物根系形成的联合共生体.菌根的建立是以共生体双方的营养交换为基础的:菌根真菌从土壤中吸收氮、磷等营养物质并转运给宿主植物,供其生长;作为交换,植物则以脂质或糖的形式向菌根真菌提供其生长所必需的碳水化合物.近年来,菌根真菌与宿主植物间的营养交换机制一直是研究的热点,国内外对菌根真菌介导的植物营养物质吸收和转运机制的研究也取得了巨大进展.本文综述了丛枝和外生两种菌根真菌与宿主植物间营养交换的最新研究进展,尤其是碳、氮、磷等几种重要营养物质的吸收与双向转运机制,以及营养交换在菌根形成中的潜在调控作用,并对目前存在的关键问题和未来研究方向进行了分析和展望,这对菌根模型的建立及菌根效益的优化具有重要意义.  相似文献   

7.
《菌物学报》2017,(7):904-913
本研究采用裂区试验设计,主区设置了3种覆膜方式:露地平播(即常规播种方法,无覆膜)、半覆膜平作(即常规播种方法,覆膜占小区面积一半)、全膜垄上穴播(即起垄后小区全覆膜,垄上播种),副区设置了2个丛枝菌根(AM)真菌接种水平:接种AM真菌(AM)和不接种对照(CK),研究了大田条件3种覆膜方式下接种AM真菌对半干旱区春播玉米根际土壤养分、有机碳含量及AM真菌特性(侵染率、根外菌丝密度与土壤球囊霉素)的影响。结果表明:3种覆膜方式下,与不接种对照相比,接种AM真菌显著提高了根系侵染率、根外菌丝密度、土壤中球囊霉素和有机碳含量、植株干重、碳氮比和土壤含水量,同时显著促进了土壤养分吸收(个别例外),其中土壤根外菌丝密度、易提取球囊霉素、有机碳、速效磷和速效钾含量、碳氮比随着覆膜方式由无覆膜-半覆膜-全覆膜的变化呈降低趋势,而植株干重、土壤中总球囊霉素、全氮和含水量随着覆膜方式由无覆膜-半覆膜-全覆膜的变化呈升高的趋势。全覆膜结合接种AM真菌在促进西北半干旱地区田间作物生长、提高土壤含水量、以及改善菌根侵染率、菌丝密度与土壤中球囊霉素含量的作用最大,但降低了土壤养分,后期还可能需要通过合理施肥措施加以维持土壤肥力水平。相关分析表明,土壤根外菌丝密度和球囊霉素含量与土壤矿质养分和水分存在一定程度的协同效应,接种AM真菌有助于根际土壤养分转化,促进植物生长。  相似文献   

8.
丛枝菌根真菌对玉米秸秆降解的影响及其作用机制   总被引:6,自引:0,他引:6  
郭涛  罗珍  朱敏  王晓峰 《生态学报》2014,34(14):4080-4087
为了比较菌根、菌丝、植物根系对玉米秸秆降解的影响,采用4室分根装置即土壤室(S)、根室(R)、菌根室(M)和菌丝室(H),分室间用400目尼龙网和有机板分隔,尼龙网袋包埋玉米秸秆于不同分室内,以玉米为宿主植物,接种丛枝菌根(AM)真菌Glomus mosseae。试验分别在移栽后第20、30、40、50、60天时取样,通过测定接种AM真菌后玉米秸秆的碳、氮释放,土壤中3种常见酶活性、微生物量碳和氮及土壤呼吸的动态变化,探讨AM真菌降解玉米秸秆可能的作用机制。研究结果表明:经60 d的培养后,与未接种S室相比,接种AM真菌的M室和H室玉米秸秆降解量提高了27.72%和8.07%;另外,M室玉米秸秆碳素释放显著增加,而氮素的释放减少,致使碳氮比显著低于其他3室,较初始值降幅达8.72%,有利于秸秆进一步降解。在试验条件下,M室中土壤酸性磷酸酶、蛋白酶、过氧化氢酶活性较其他3室都有显著提高,并增加了微生物量碳、氮和土壤呼吸作用,形成了明显有别于根际的微生物区系。这一系列影响都反映出AM直接或间接作用于玉米秸秆的降解过程,是导致玉米秸秆降解加快的重要原因。  相似文献   

9.
菌根真菌促进植物吸收利用氮素机制的研究进展   总被引:2,自引:0,他引:2  
作为自然界最为普遍的一种植物共生体,菌根能够极大地促进植物对氮素的吸收和利用,其中菌根真菌在共生结构功能中发挥了重要作用。本文分别从菌根解剖构造、生理生化和分子生物学方面系统总结了菌根真菌促进植物吸收和利用氮素的研究现状。重点介绍了菌根真菌可利用的氮素形态及影响其利用的主要因素、菌根真菌的氮代谢途径GS-GOGAT以及菌根真菌中存在的鸟氨酸循环途径,指出精氨酸是菌丝内氮转运的主要形式,NH3可能为菌根真菌和植物界面质外体的主要转运形式。  相似文献   

10.
丛枝菌根利用氮素研究进展   总被引:5,自引:0,他引:5  
邓胤  申鸿  郭涛 《生态学报》2009,29(10):5627-5635
氮素是植物需求量最大的元素,丛枝菌根真菌与植物形成共生体后能从土壤中获取无机氮、简单的氨基酸,还能利用一些复杂的有机态氮.考虑到NH+4在土壤中的移动性低及丛枝菌根真菌的专性共生菌的特点,丛枝菌根真菌吸收NH+4对植物的贡献较大.近年来的研究发现丛枝菌根真菌内存在与氮素代谢有关的鸟氨酸循环,而精氨酸则是菌丝内氮素转移的主要形式.综述最近的AMF对氮素的吸收、转运、同化、交换等方面的文献,旨在揭示丛枝菌根真菌氮素利用特点,阐明丛枝菌根真菌在氮循环系统中的重要作用.  相似文献   

11.
Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems.  相似文献   

12.
菌根真菌在生态系统中的作用   总被引:41,自引:1,他引:40       下载免费PDF全文
 菌根是一种植物营养根与土壤真菌形成的共生体,在自然界中分布广泛。本文着重从以下几个方面介绍相关的研究进展:1) 菌根真菌作为生态系统的重要组成部分,具有不可忽视的生物量,并成为连接绿色植物和食真菌者食物链的重要一环;2) 菌根真菌通过参与凋落物的酶降解过程影响有机物的循环,通过促进生物固氮、加速土壤磷的风化、提高土壤溶液离子的有效性以及直接吸收等过程影响氮、磷、钾、钙、镁等元素的无机循环;3) 菌根真菌与土壤微生物间存在有益的或拮抗的相互作用,并可以直接或间接地影响根际生物区系的组成和数量;菌根真菌通过对宿主植物的有益作用而影响植物的种间竞争,通过菌根网络而形成的种团可以在同种或不同种植物间实现资源的重新分配和共享;由于对种间关系的作用和对食物链的影响,菌根真菌对群落的物种构成和多样性的维持具有重要的作用;菌根真菌是群落演替过程的指示者,也是这一过程的参与者和推动者,并且菌根真菌的存在也有利于提高土壤团聚体的稳定性及促进灰壤的形成;4) 菌根真菌的种类和数量可以指示生态系统中自然的或人类活动引起的变化,并可以在生态系统的保护、恢复或重建过程中发挥重要作用。文章的最后还介绍了最新的研究热点和发展趋势。  相似文献   

13.
The amount of carbon plants allocate to mycorrhizal symbionts exceeds that emitted by human activity annually. Senescent ectomycorrhizal roots represent a large input of carbon into soils, but their fate remains unknown. Here, we present the surprising result that, despite much higher nitrogen concentrations, roots colonized by ectomycorrhizal (EM) fungi lost only one-third as much carbon as non-mycorrhizal roots after 2 years of decomposition in a piñon pine ( Pinus edulis ) woodland. Experimentally excluding live mycorrhizal hyphae from litter, we found that live mycorrhizal hyphae may alter nitrogen dynamics, but the afterlife (litter-mediated) effects of EM fungi outweigh the influences of live fungi on root decomposition. Our findings indicate that a shift in plant allocation to mycorrhizal fungi could promote carbon accumulation in soil by this pathway. Furthermore, EM litters could directly contribute to the process of stable soil organic matter formation, a mechanism that has eluded soil scientists.  相似文献   

14.
AMF对喀斯特土壤枯落物分解和对宿主植物的养分传递   总被引:1,自引:0,他引:1  
何跃军  钟章成  董鸣 《生态学报》2012,32(8):2525-2531
为探索丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在喀斯特土壤中养分利用机制,采用分室系统隔室装置(用20μm或0.45μm尼龙网双层隔离)对香樟(Cinnamomum camphora)幼苗进行幼套球囊霉(Glomus etunicatum)接种处理和施氮处理,并采用15N稳定同位素技术标记了黑麦草(Lolium perenne)枯落物作为土壤有机残体,幼苗生长15周后测定了隔室幼苗生长性状指标、氮、磷摄取量、植株和隔室土壤中的δ15N值、微生物量碳、微生物量氮以及菌丝体密度,结果表明:AMF具有腐生营养能力,促进了土壤枯落物的分解并吸收其释放的15N传递给宿主植物利用;香樟幼苗优先利用根际周围氮维持生长;在低氮状态下,香樟植株通过AMF菌丝体更多地利用了相邻隔室枯落物分解释放的15N;施加根际外源氮有利于AMF对隔室枯落物的分解,但降低了植株对枯落物氮的利用;根际高氮状态下植株的氮、磷摄取量较大;高养分状态下提高了相邻隔室微生物量碳、氮含量和菌丝体密度。  相似文献   

15.
The hyphae of ectomycorrhizal and ericoid mycorrhizal fungi proliferate in nitrogen (N)-limited forests and tundra where the availability of inorganic N is low; under these conditions the most common fungal species are those capable of protein degradation that can supply their host plants with organic N. Although it is widely understood that these symbiotic fungi supply N to their host plants, the transfer is difficult to quantify in the field. A novel approach uses the natural 15N:14N ratios (expressed as δ15N values) in plants, soils, and mycorrhizal fungi to estimate the fraction of N in symbiotic trees and shrubs that enters through mycorrhizal fungi. This calculation is possible because mycorrhizal fungi discriminate against 15N when they create compounds for transfer to plants; host plants are depleted in 15N, whereas mycorrhizal fungi are enriched in 15N. The amount of carbon (C) supplied to these fungi can be stoichiometrically calculated from the fraction of plant N derived from the symbiosis, the N demand of the plants, the fungal C:N ratio, and the fraction of N retained in the fungi. Up to a third of C allocated belowground, or 20% of net primary production, is used to support ectomycorrhizal fungi. As anthropogenic N inputs increase, the C allocation to fungi decreases and plant δ15N increases. Careful analyses of δ15N patterns in systems dominated by ectomycorrhizal and ericoid mycorrhizal symbioses may reveal the ecosystem-scale effects of alterations in the plant–mycorrhizal symbioses caused by shifts in climate and N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular mycorrhizal) fungi as found by trypan blue staining procedure. The percentage of root colonization by AM fungi varied from 13.3% to 100%. Mangifera indica and Morus indica have maximum percentage of colonization (100%). The intensity of root colonization were abundant in the plants belonging to the families Anacardiaceae, Asclepiadaceae, Moraceae, Leguminosae and Apocynaceae whereas the intensity of colonization of crop roots were moderate and poor belonging to Gramineae and Leguminosae. The presence of greater number of spore in soil was always associated with the incidence of abundant mycelia. In plant roots the formation of spore and mycelia was restricted by low pH. Number of mycorrhizal fungus spores ranged between 35 to100 per 100g air dried soil in different family respective soils. The frequency of mycorrhizal fungus infection showed positive correlation with soil pH, moisture, water holding capacity, texture, total nitrogen, organic carbon, phosphorus, calcium, potassium, and magnesium. Especially phosphorus and nitrogen in the soil greatly influenced the plant root infection by AM fungi.  相似文献   

17.
Mycorrhizas are ubiquitous plant–fungus mutualists in terrestrial ecosystems and play important roles in plant resource capture and nutrient cycling. Sporadic evidence suggests that anthropogenic nitrogen (N) input may impact the development and the functioning of arbuscular mycorrhizal (AM) fungi, potentially altering host plant growth and soil carbon (C) dynamics. In this study, we examined how mineral N inputs affected mycorrhizal mediation of plant N acquisition and residue decomposition in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that either prevented or allowed AM fungal hyphae but not plant roots to grow into the TEST compartments. Wild oat (Avena fatua L.) was planted in the HOST compartments that had been inoculated with either a single species of AM fungus, Glomus etunicatum, or a mixture of AM fungi including G. etunicatum. Mycorrhizal contributions to plant N acquisition and residue decomposition were directly assessed by introducing a mineral 15N tracer and 13C‐rich residues of a C4 plant to the TEST compartments. Results from 15N tracer measurements showed that AM fungal hyphae directly transported N from the TEST soil to the host plant. Compared with the control with no penetration of AM fungal hyphae, AM hyphal penetration led to a 125% increase in biomass 15N of host plants and a 20% reduction in extractable inorganic N in the TEST soil. Mineral N inputs to the HOST compartments (equivalent to 5.0 g N m?2 yr?1) increased oat biomass and total root length colonized by mycorrhizal fungi by 189% and 285%, respectively, as compared with the no‐N control. Mineral N inputs to the HOST plants also reduced extractable inorganic N and particulate residue C proportion by 58% and 12%, respectively, in the corresponding TEST soils as compared to the no‐N control, by stimulating AM fungal growth and activities. The species mixture of mycorrhizal fungi was more effective in facilitating N transport and residue decomposition than the single AM species. These findings indicate that low‐level mineral N inputs may significantly enhance nutrient cycling and plant resource capture in terrestrial ecosystems via stimulation of root growth, mycorrhizal functioning, and residue decomposition. The long‐term effects of these observed alterations on soil C dynamics remain to be investigated.  相似文献   

18.
Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a 15N‐labelled, nitrogen‐rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号