首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Culm recruitment, standing crop biomass, net production and carbon flux were estimated in mature (5 years after last harvest) and recently harvested bamboo (Dendrocalamus strictus (Roxb.) Nees) savanna sites in the dry tropics. During the 2 study years bamboo shoot recruitment was 1711–3182 and 1432–1510 shoots ha−1 in harvested and mature sites, respectively. Corresponding shoot mortality was 66–93% and 62–69%, respectively. Total biomass was 34.9 t ha−1 at the harvested site and 47.4 t ha−1 at the mature site. Harvesting increased the relative contribution of belowground bamboo biomass. Annual litter input to soil was 2.7 and 5.9 t ha−1 year−1 at the harvested and mature sites, respectively. The bulk of the annual litterfall (78–88%) occurred in the cool dry season (November to February). The mean litter mass on the savanna floor ranged from 3.1 to 3.3 t ha−1; at the harvested site wood litter contributed 70% of the litter mass and at the mature site leaves formed 77% of the litter mass. The mean total net production (TNP) for the two annual cycles was 15.8 t ha−1 year−1 at the harvested site and 19.3 t ha−1 year−1 at the mature site. Nearly half (46–57%) of the TNP was allocated to the belowground parts. Short lived components (leaves and fine roots) contributed about four-fifths of the net production of bamboo. Total carbon storage in the system was 64.4 t ha−1 at the harvested site and 75.4 t ha−1 at the mature site, of which 23–28% was distributed in vegetation, 2% in litter and 70–75% in soil. Annual net carbon deposition was 6.3 and 8.7 t ha−1 year−1 at harvested and mature sites, respectively.  相似文献   

2.
The biomass and net primary productivity (NPP) of 2- to 8-year-oldplantations of Eucalyptus tereticornis Sm. (= E. hybrid) growingin the tarai (a level area of superabundant water) region ofCentral Himalaya were estimated. Allometric equations for allthe above-ground and below-ground components of trees and shrubswere developed for each stand. Understorey, forest floor biomassand litter fall were also estimated from stands. Shrubs appearedfirst at 5-year-old plantation. The biomass of vegetation, forestfloor littermass, tree litter fall and net primary productivity(NPP) of trees and shrubs increased with the increase in plantationage, whereas herb biomass and NPP significantly (P < 0·01)decreased with the increase in plantation age. The total plantationbiomass increased from 7·7 t ha–1 in the 2-year-oldto 126·7 t ha–1 in the 8-year-old plantation andNPP from 8·6 t ha–1 year–1 in the 2-year-oldto 23·4 t ha–1 year–1 in the 8-year-old plantation.The biomass accumulation ratio ranged from 0·81 to 5·93. Eucalyptus tereticornis Sm, plantation, biomass, forest floor, litter fall, net primary productivity, biomass accumulation ratio  相似文献   

3.
In a declining sugar maple (SM) stand, we tested the hypothesis that an increasing relative abundance of American beech (AB) and yellow birch (YB) would improve litter quality by providing a higher proportion of litterfall richer in base cations and lower in acidity. From 1989 to 2006, SM leaf fall diminished from 59% (1,718 kg ha−1 year−1) to 36% (915 kg ha−1 year−1) of the total leaf fall biomass. Overall, the increase in AB and YB litterfall compensated for the SM decrease, resulting in constant annual leaf litterfall fluxes (2,803 kg ha−1 year−1) over the period studied. However, because the leaf litter for AB and YB had Ca and Mg concentrations 2–3 times higher than did SM, Ca and Mg concentrations and fluxes in leaf litterfall significantly increased between 1989 and 2006. Leaf litterfall of AB and YB also has a higher base/acid ratio than SM. Consequently, changes in forest composition following SM decline led to a clear improvement in litterfall quality in terms of base cations content and fluxes and acid–base properties.  相似文献   

4.
The biomass and net primary productivity (NPP) of 5- to 8-year-oldpoplar (Populus deltoides Marsh, Clone D121) plantations growingin the Tarai belt (low-lying plains with high water table adjacentto foothills of central Himalaya) were estimated. Allometricequations for all the above-ground and below-ground componentsof trees and shrubs were developed for each stand. Understorey,forest floor biomass, and litter fall were also estimated fromstands. The biomass of plantation, forest floor litter mass,tree litter fall and net primary productivity (NPP) of treesand shrubs increased with increase in plantation age, whereasherb biomass and NPP significantly (P < 0·01) decreasedwith increasing plantation age. The total plantation biomassincreased from 84·0 in the 5-year-old to 170·0t ha-1 in the 8-year-old plantation and NPP from 16·8t ha-1 year-1 in the 5- and 6-year-old to 21·8 t ha-1year-1 in the 8-year-old plantation. The biomass accumulationratio (biomass: net production, BAR) for different tree componentsincreased with the age of plantation increase. The BAR ratioranged from 4·9 in the 5-year-old to 7·7 in the8-year-old plantation.Copyright 1995, 1999 Academic Press Populus deltoides plantations (Clone D121), biomass, dry matter turnover, net primary productivity, Tarai belt of Central Himalaya  相似文献   

5.
Biomass and net production were measured in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, which had carried out gregarious flowering in 1969 and has been recovering vegetatively. The culm density fluctuated around an average value of 12 040 ha−1 during the research period (1985–91). Annual recruirment and mortality rates of culms were 1340 and 1133 ha−1, respectively. The mean diameter at breast height increased from 7.28 cm in 1985 to 8.68 cm in 1991, and the biomass of culms increased from 71.3 to 111.6t ha−1 over the same time period. Branch and leaf biomasses were almost constant, 10.0 and 9.4t ha−1 on average, respectively. The leaf area index of the stand was 11.6 ha ha−1, which is one of the largest values found in Japanese forests. The belowground biomass of 32.6t ha−1 for rhizomes and 14.8t ha−1 for fine roots resulted in the smaller ratio of aboveground parts to the root system (2.38) than those determined for forest stands. The amount of litterfall, excluding culms and large branches, was large (9.13t ha−1 year−1), corresponding to those measured in equatorial stands. The aboveground net production was 24.6t ha−1 year−1, larger than the average value reported for forest stands under similar weather conditions.  相似文献   

6.
To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha−1 year−1 for trees, from 0.05 to 0.18 t ha−1 year−1 for shrubs and from 0.54 to 0.66 t ha−1 year−1 for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990–1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.  相似文献   

7.
Mangrove swamps are key ecosystems along the Vietnam coast. Although mangrove litter is thought to represent an important input of organic matter and nutrients to the coastal aquatic systems, the factors determining the quality and size of this litter flux have not been studied so far. We monitored leaf, stipule, twig, and reproductive litter monthly in monocultures of Rhizophora apiculata mangrove forests of 7, 11, 17 and 24 years old in the Camau province, Mekong Delta, Vietnam. Litter traps were used to measure litter fall production from June 2001 till May 2002. Total litter fall was in the range of 8.86–14.16 t DW ha−1 year−1. Leaves were the main component, and represented 70% of litter fall production in all stands. Total litter fall was lower in the older stands but the amount of reproductive litter was significantly higher in these stands (17 and 24 years). Biomass of leaf litter was highest between the end of the wet season and the beginning of the dry season. Phosphorus and nitrogen levels in leaf litter were significantly higher in younger than in older stands. Overall, our study indicated that young stands produced the highest input of litter and particularly of nitrogen and phosphorus to the surrounding aquatic system. Consequently, these stands contribute significantly to the fisheries.  相似文献   

8.
The present study deals with the structure and functioning ofthree different forest communities, viz., horse chestnut, silverfir and kharsu oak forests, in a high altitude region of CentralHimalaya. The tree density and total basal cover of horse chestnutforest was 280 and 76, silver fir forest 355 and 106, and kharsuoak forest 480 trees ha-1 and 73 m2 ha-1, respectively. Allometricequations relating biomass of different tree components to cbh(circumference at breast height) were significant. Total vegetationbiomass was 505 t ha-1 in horse chestnut, 566 t ha-1 in silverfir and 593 t ha-1 in kharsu oak forests, of which maximum contributionwas by tree layer followed by shrub, herb, sapling and seedlinglayers. The forest floor litter biomass was 2·1, 4·7and 4·2 t ha-1 in horse chestnut, silver fir and kharsuoak forests, respectively. The total litter fall was 7·3,6·7 and 9·4 t ha-1 year-1, of which leaf littercontributed 48, 39 and 64% in horse chestnut, silver fir andkharsu oak forests, respectively. Turnover rate of tree litterwas 0·80 in horse chestnut, 0·61 in silver firand 0·71 in kharsu oak forests. Net primary productionof total vegetation was 19·6, 18·9 and 24·9t ha-1 year-1, of which tree layer contributed maximum proportionfollowed by herb, shrub, sapling and seedling layers. To showdry matter storage and flow of dry matter within the system,compartment models were developed for all forests.Copyright1995, 1999 Academic Press Total basal cover, biomass, productivity, Quercus, Aesculus, Abies, high altitude, litter, compartmental transfer  相似文献   

9.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

10.
Gross production and carbon cycling in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, were determined, and then a compartment model showing the carbon stock and cycling within the ecosystem was developed. Aboveground carbon stock was 52.3 tC ha−1, increasing at a rate of 3.6 tC ha−1 year−1. Belowground carbon stock was 20.8 tC ha−1 in the root system and 92.0 tC ha−1 in the soil. Aboveground net production was 11.2 tC ha−1 year−1. Belowground net production was crudely estimated at 4.5 tC ha−1 year−1. The gross production was estimated at 41.8 tC ha−1 year−1 by summing the amount of outflow to the environment and the increment in biomass. Leaves consumed 13.7 tC ha−1 year−1 by respiration; the rest (41.8−13.7=28.1 tC ha−1 year−1) was surplus production of the leaves and flowed into the other compartments. The amounts of construction and maintenance respiration of the aboveground compartments were 3.4 and 18.5 tC ha−1 year−1, respectively. The annual amount of soil respiration was 11.2 tC ha−1 year−1. Soil respiration levels of 4.3 and 3.1 tC ha−1 year−1 were estimated for the flow of root respiration and root detritus. The proportion of net to gross production was 37%, which fell within the range of young and mature forests. A shorter life span of culms, compared to tree trunks, resulted in smaller biomass accumulation ratio (biomass/net production) in the ecosystem, of 4.66.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号