首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper describes the biomass and productivity of maple (Acer cappadocicum) forest occurring at an altitude of 2,750 m in the west central Himalayas. Total vegetation biomass was 308.3 t ha−1, of which the tree layer contributed the most, followed by herbs and shrubs. The seasonal forest-floor litter mass varied between 5.4 t ha−1 (in rainy season) and 6.6 t ha−1 (in winter season). The annual litter fall was 6.2 t ha−1, of which leaf litter contributed the largest part (59% of the total litter fall). Net primary productivity of total vegetation was 19.5 t ha−1 year−1. The production efficiency of leaves (net primary productivity/leaf mass) was markedly higher (2.9 g g−1 foliage mass year−1) than those of the low-altitude forests of the region.  相似文献   

2.
Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha−1 year−1 and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha−1 year−1. Thus, NEP in the plantation was 4.3 Mg C ha−1 year−1. In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.  相似文献   

3.
Culm recruitment, standing crop biomass, net production and carbon flux were estimated in mature (5 years after last harvest) and recently harvested bamboo (Dendrocalamus strictus (Roxb.) Nees) savanna sites in the dry tropics. During the 2 study years bamboo shoot recruitment was 1711–3182 and 1432–1510 shoots ha−1 in harvested and mature sites, respectively. Corresponding shoot mortality was 66–93% and 62–69%, respectively. Total biomass was 34.9 t ha−1 at the harvested site and 47.4 t ha−1 at the mature site. Harvesting increased the relative contribution of belowground bamboo biomass. Annual litter input to soil was 2.7 and 5.9 t ha−1 year−1 at the harvested and mature sites, respectively. The bulk of the annual litterfall (78–88%) occurred in the cool dry season (November to February). The mean litter mass on the savanna floor ranged from 3.1 to 3.3 t ha−1; at the harvested site wood litter contributed 70% of the litter mass and at the mature site leaves formed 77% of the litter mass. The mean total net production (TNP) for the two annual cycles was 15.8 t ha−1 year−1 at the harvested site and 19.3 t ha−1 year−1 at the mature site. Nearly half (46–57%) of the TNP was allocated to the belowground parts. Short lived components (leaves and fine roots) contributed about four-fifths of the net production of bamboo. Total carbon storage in the system was 64.4 t ha−1 at the harvested site and 75.4 t ha−1 at the mature site, of which 23–28% was distributed in vegetation, 2% in litter and 70–75% in soil. Annual net carbon deposition was 6.3 and 8.7 t ha−1 year−1 at harvested and mature sites, respectively.  相似文献   

4.
Aboveground net production rates of the subalpine stone pine (Pinus pumila) forests in central Japan were estimated by the summation method; net production was defined as the sum of annual biomass increment and annual loss due to death. In the two pine stands of different scrub heights, P1 (200 cm) and P2 (140 cm), aboveground biomass reached 177 and 126 ton ha−1, respectively. Leaf biomass was about 14 ton ha−1 in each stand. The estimates of aboveground net production during the 2 year period (1987–1989) averaged 4.1 and 3.7 ton ha−1 y−1 in P1 and P2, respectively, which were at the lowest among the pine forests in the world. Two indices of efficiency of energy fixation, that is, the ratio of net production to the total radiation during a growing season and the ratio of net production to total radiation per unit of leaf weight, were evaluated. Both efficiency indices for the twoP. pumila stands fell in the range obtained for other Japanese evergreen conifer forests. This suggested that the low annual net production of the stone pine stands were mainly due to a limitation in the length of the growing season. The pine forests were also characterized by a small allocation (about 17%) of aboveground net production into biomass increment, in comparison with other evergreen conifer forest types. Annual net carbon gain in theP. pumila forests was suggested to be largely invested in leaf production at the expense of the growth of woody parts.  相似文献   

5.
Biomass and net production were measured in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, which had carried out gregarious flowering in 1969 and has been recovering vegetatively. The culm density fluctuated around an average value of 12 040 ha−1 during the research period (1985–91). Annual recruirment and mortality rates of culms were 1340 and 1133 ha−1, respectively. The mean diameter at breast height increased from 7.28 cm in 1985 to 8.68 cm in 1991, and the biomass of culms increased from 71.3 to 111.6t ha−1 over the same time period. Branch and leaf biomasses were almost constant, 10.0 and 9.4t ha−1 on average, respectively. The leaf area index of the stand was 11.6 ha ha−1, which is one of the largest values found in Japanese forests. The belowground biomass of 32.6t ha−1 for rhizomes and 14.8t ha−1 for fine roots resulted in the smaller ratio of aboveground parts to the root system (2.38) than those determined for forest stands. The amount of litterfall, excluding culms and large branches, was large (9.13t ha−1 year−1), corresponding to those measured in equatorial stands. The aboveground net production was 24.6t ha−1 year−1, larger than the average value reported for forest stands under similar weather conditions.  相似文献   

6.
Woody debris (WD) is an important component of forest C budgets, both as a C reservoir and source of CO2 to the atmosphere. We used an infrared gas analyzer and closed dynamic chamber to measure CO2 efflux from downed coarse WD (CWD; diameter≥7.5 cm) and fine WD (FWD; 7.5 cm>diameter≥2 cm) to assess respiration in a selectively logged forest and a maturing forest (control site) in the northeastern USA. We developed two linear regression models to predict WD respiration: one based on WD temperature, moisture, and size (R 2=0.57), and the other on decay class and air temperature (R 2=0.32). WD respiration (0.28±0.09 Mg C ha−1 year−1) contributed only ≈2% of total ecosystem respiration (12.3±0.7 Mg C ha−1 year−1, 1999–2003), but net C flux from CWD accounted for up to 30% of net ecosystem exchange in the maturing forest. C flux from CWD on the logged site increased modestly, from 0.61±0.29 Mg C ha−1 year−1 prior to logging to 0.77±0.23 Mg C ha−1 year−1 after logging, reflecting increased CWD stocks. FWD biomass and associated respiration flux were ≈7 times and ≈5 times greater, respectively, in the logged site than the control site. The net C flux associated with CWD, including inputs and respiratory outputs, was 0.35±0.19 Mg C ha−1 year−1 (net C sink) in the control site and −0.30±0.30 Mg C ha−1 year−1 (net C source) in the logged site. We infer that accumulation of WD may represent a small net C sink in maturing northern hardwood forests. Disturbance, such as selective logging, can enlarge the WD pool, increasing the net C flux from the WD pool to the atmosphere and potentially causing it to become a net C source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

8.
Aboveground biomass and litterfall ofPinus pumila scrubs, growing on the Kiso mountain range in central Japan, were investigated from 1984 to 1985. The biomass of two research plots (P1 and P2) with different scrub heights was estimated by two methods, the stratified clip technique and the allometric method. Aboveground total biomass estimated by the latter method reached 181 ton d.w. ha−1 in P1 and 132 ton d.w. ha−1 in P2. Creeping stems contributed to about half of the total biomass. Although estimates of woody organs differed between the two plots, leaf biomass estimates were almost the same at 15.5 ton d.w. ha−1. The canopies of the twoP. pumila scrubs were characterized by a large mean leaf area density of 5.0 m2 m−3. Despite this large area density, relatively moderate attenuation of light intensity was observed. Specific leaf area generally increased with reduced leaf height. Annual total litterfall was estimated to be 3.60 ton d.w. ha−1 yr−1 in P1 and 2.39 ton d.w. ha−1 yr−1 in P2. Annual leaf fall in both plots was approximately 2.0 ton d.w. ha−1 yr−1. Leaves fell mainly in early autumn. Annual loss rates of branches, estimated as the sum of annual branch litterfall and the amount of newly formed attached dead branches, were 0.29 ton d.w. ha−1 yr−1 in P1 and 0.37 ton d.w. ha−1 yr−1 in P2.  相似文献   

9.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

10.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

11.
Efforts to improve models of terrestrial productivity and to understand the function of tropical forests in global carbon cycles require a mechanistic understanding of spatial variation in aboveground net primary productivity (ANPP) across tropical landscapes. To help derive such an understanding for Borneo, we monitored aboveground fine litterfall, woody biomass increment and ANPP (their sum) in mature forest over 29 months across a soil nutrient gradient in southwestern Kalimantan. In 30 (0.07 ha) plots stratified throughout the watershed (∼340 ha, 8–190 m a.s.l.), we measured productivity and tested its relationship with 27 soil parameters. ANPP across the study area was among the highest reported for mature lowland tropical forests. Aboveground fine litterfall ranged from 5.1 to 11.0 Mg ha−1 year−1 and averaged 7.7 ± 0.4 (mean ± 95 C.I.). Woody biomass increment ranged from 5.8 to 23.6 Mg ha−1 year−1 and averaged 12.0 ± 2.0. Growth of large trees (≥60 cm dbh) contributed 38–82% of plot-wide biomass increment and explained 92% of variation among plots. ANPP, the sum of these parameters, ranged from 11.1 to 32.3 Mg ha−1 year−1 and averaged 19.7 ± 2.2. ANPP was weakly related to fine litterfall (r 2 = 0.176), but strongly related to growth of large trees at least 60 cm dbh (r 2 = 0.848). Adjusted ANPP after accounting for apparent “mature forest bias” in our sampling method was 17.5 ± 1.2 Mg ha−1 year−1.Relating productivity measures to soil parameters showed that spatial patterning in productivity was significantly related to soil nutrients, especially phosphorus (P). Fine litterfall increased strongly with extractable P (r 2 = 0.646), but reached an asymptote at moderate P levels, whereas biomass increment (r 2 = 0.473) and ANPP (r 2 = 0.603) increased linearly across the gradient. Biomass increment of large trees was more frequently and strongly related to nutrients than small trees, suggesting size dependency of tree growth on nutrients. Multiple linear regression confirmed the leading importance of soil P, and identified Ca as a potential co-limiting factor. Our findings strongly suggest that (1) soil nutrients, especially P, limit aboveground productivity in lowland Bornean forests, and (2) these forests play an important, but changing role in carbon cycles, as canopy tree logging alters these terrestrial carbon sinks. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Land-use changes such as deforestation have been considered one of the main contributors to increased greenhouse gas emissions, while verifiable C sequestration through afforestation projects is eligible to receive C credits under the Kyoto Protocol. We studied the short-term effects on CO2 emissions of converting agricultural land-use (planted to barley) to a hybrid poplar (Populus deltoids × Populus × petrowskyana var. Walker) plantation in the Parkland region in northern Alberta, where large areas are being planted to hybrid poplars. CO2 emissions were measured using a static gas chamber method. No differences were found in soil temperature, volumetric moisture content, or soil respiration rates between the barley and Walker plots. The mean soil respiration rate in 2005 was 1.83 ± 0.19 (mean ± 1 SE) and 1.89 ± 0.13 μmol CO2 m−2 s−1 in the barley and Walker plots, respectively. However, biomass production was higher in the barley plots, indicating that the agricultural land-use system had a greater ability to fix atmospheric CO2. The C balance in the land-use systems were estimated to be a small net gain (before considering straw and grain removal through harvesting) of 0.03 ± 0.187 Mg C ha−1 year−1 in the barley plots and a net loss of 3.35 ± 0.080 Mg C ha−1 year−1 from the Walker poplar plots. Over the long-term, we expect the hybrid poplar plantation to become a net C sink as the trees grow bigger and net primary productivity increases.  相似文献   

13.
Aboveground net primary production (ANPP) and leaf-area index (LAI) of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) saplings and aboveground productivity of herbaceous vegetation components were determined 9 years after the 1988 fires in Yellowstone National Park (YNP). Measurements were made in four sites representing a wide range of early postfire vegetation present in YNP, including high-density lodgepole pine, low-density lodgepole pine, and two nonforest stands. LAI of the pine saplings and total ANPP (trees plus herbs) generally increased with increasing sapling density, from 0.002 m2 m 2 and 0.25 Mg ha 1 year 1 in the infertile nonforest stand (100 pine saplings ha 1) to 1.8 m2 m 2 and 4.01 Mg ha 1 year 1 in the high-density pine stand (62,800 saplings ha 1). Aboveground herbaceous productivity was not strongly correlated with sapling density, but appeared to be influenced by soil fertility. In the high-density pine stand, tree ANPP and LAI were within the lower range of values reported for similar mature coniferous forests. This finding suggests that at least some ecosystem processes (related to ANPP and LAI) may have nearly recovered after only 9 years of postfire succession, in at least some of the young forests developing after the 1988 Yellowstone fires. Received 7 April 1998; accepted 1 December 1998.  相似文献   

14.
Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113–114 Mg C ha-1 and 448–517 Mg C ha-1 in AC and AA, respectively. Aboveground productivity was 3.35–3.36 Mg C ha-1 year-1 in AC and 2.22–2.54 Mg C ha-1 year-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21–4.24 and 3.78–4.10 Mg C ha-1 year-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539–640 years for the whole forest in the Andes and 1368–1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.  相似文献   

15.
In the present study we analysed whether airborne N pollution may constitute one important driver for the encroachment of Molinia caerulea in dry heathland ecosystems. Based on full-factorial field experiments (in 2006 and 2008) and complementary greenhouse experiments (in 2008), we quantified growth responses of Molinia caerulea to N and P fertilisation (50 kg N ha−1 year−1, 20 kg P ha−1 year−1). Aboveground biomass production of Molinia caerulea was limited by P in 2006, but by N in both experiments in 2008. In the greenhouse experiment, N addition caused a sixfold increase of the biomass of vegetative tillers, and in all experiments the biomass and numbers of flowering tillers showed a significant increase due to fertilisation. Our experiments indicated that growth of Molinia caerulea was primarily limited by N, but in dry heaths the kind of nutrient limitation may be mediated by other factors such as water availability during the vegetative period. Shifts in biomass allocation patterns resulting from N fertilisation showed that Molinia caerulea encroachment in dry heaths is not only attributable to increased leaf biomass, but also due to higher investments in reproductive tissue that allow for increased seed production and thus accelerated encroachment of seedlings in places where the dwarf shrub canopy has been opened after disturbance.  相似文献   

16.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

17.
Forest soil is a major component of terrestrial ecosystems for carbon sequestration and plays an important role in the global carbon cycle. Soil carbon flux and soil carbon pools were investigated in a poplar plantation chronosequence over a rotation in northwest China. Based on continuous field observation in 2007, the results showed that mean soil CO2 efflux rate was 5.54, 4.81, and 3.93 μmol CO2 m−2 s−1 for stands of 2-, 8-, and 15-year-old, respectively, during the growing season. Significant differences in soil respiration of three age classes were mainly because soil temperature, carbon allocation, and fine root growth changed greatly with stand age. Multiple regression analysis suggested that soil temperature and fine root biomass in the upper layer could explain 78–85% of the variation in soil respiration. Mineral soil C stock at 0–40 cm depth was 55.77, 55.09, and 58.14 t ha−1 in the 2-, 8-, and 15-year-old stands, respectively. The average rate of soil C sequestration was 0.13 t ha−1 year−1 following afforestation on former crop lands. Although the plantations had similar management practices and soil types since their establishment, many biotic and abiotic factors such as root biomass and turnover rate, soil condition of the plantations had undergone marked changes at different development stages, which could result in the remarkable differences in soil carbon flux and storage over a rotation. Our results highlight the importance of the development stage within a rotation of poplar plantation in assessment of soil carbon budget.  相似文献   

18.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
A new Sim-CYCLE grazing model has been obtained by combining a grazing model (Seligman et al. 1992, Ecol. Model. 60: 45–61) with the Sim-CYCLE model (Ito and Oikawa 2002, Ecol. Model. 151: 143–176). The new model has been validated against a set of field data obtained at Kherlen Bayaan-Ulaan (KBU) grassland. On the basis of the model, the root responses to grazing of KBU grassland have been studied under different conditions of stocking rates and precipitation. Model results indicate that both below-ground biomass (BB) and below-ground net primary production (BNPP) generally decrease with increasing stocking rate. However, if stocking rate is not higher than 0.7 sheep ha−1, a sustainable state of the grassland ecosystem can be achieved after about 100 years, which suggests that the maximum sustainable stocking rate at KBU should be 0.7 sheep ha−1. At the sustainable state, the maximum BB in a year is about 11 Mg DM ha−1 under non-grazing condition, 5 Mg DM ha−1 under 0.4 sheep ha−1 stocking rate, and 4 Mg DM ha−1 under 0.7 sheep ha−1 stocking rate; the BNPP is 1.3 Mg DM ha−1 year−1 under non-grazing condition, and 0.6 Mg DM ha−1 year−1 under 0.4 sheep ha−1 stocking rate, and 0.4 Mg DM ha−1 year−1 under 0.7 sheep ha−1 stocking rate. Ratio of non-assimilation organ to assimilation organ (C/F) increases with increasing stocking rate. The C/F ratio is 10.99 under non-grazing conditions, and 12.11 under 0.7 sheep ha−1 stocking rate. Root turnover rate decreases with increasing stocking rate. The rate is 12% each year under non-grazing conditions, and 11% each year under 0.7 sheep ha−1 stocking rate. In addition, the effect of grazing on the grassland ecosystem under different scenarios of precipitation is also analyzed. Both BB and BNPP increase with increased precipitation, and vice versa. When precipitation is set to be 10% higher than the averaged from 1993 to 2002, the maximum sustainable stocking rate is 0.8 sheep ha−1, and when the precipitation is set to be 15% lower than the averaged, the maximum sustainable stocking rate is 0.6 sheep ha−1.  相似文献   

20.
At present, research activities on the role of orchard systems in sequestering atmospheric CO2 remain scarce. This paper aimed to contribute to assessing the carbon balance of a Mediterranean olive (Olea europea) orchard. The net ecosystem exchange, the ecosystem respiration and the gross primary production were computed for two consecutive years through eddy covariance, and the different biomass accumulation terms were also inferred in the same period through an inventorial method. The net carbon exchange ranged from 13.45 t(C) ha?1 year?1 to 11.60 t(C) ha?1 year?1. Very similar values [12.2 and 11.5 t(C) ha?1 year?1] were found with the direct carbon accumulation inventory. The intensive farming management (irrigation included) and the young age of the plants (12–16 years old), still in an active growing phase, led the olive plantation to be a higher carbon sink with respect to other evergreen orchards reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号