首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global significance of carbon storage in Indonesia’s coastal wetlands was assessed based on published and unpublished measurements of the organic carbon content of living seagrass and mangrove biomass and soil pools. For seagrasses, median above- and below-ground biomass was 0.29 and 1.13 Mg C ha?1 respectively; the median soil pool was 118.1 Mg C ha?1. Combining plant biomass and soil, median carbon storage in an Indonesian seagrass meadow is 119.5 Mg C ha?1. Extrapolated to the estimated total seagrass area of 30,000 km2, the national storage value is 368.5 Tg C. For mangroves, median above- and below-ground biomass was 159.1 and 16.7 Mg C ha?1, respectively; the median soil pool was 774.7 Mg C ha?1. The median carbon storage in an Indonesian mangrove forest is 950.5 Mg C ha?1. Extrapolated to the total estimated mangrove area of 31,894 km2, the national storage value is 3.0 Pg C, a likely underestimate if these habitats sequester carbon at soil depths >1 m and/or sequester inorganic carbon. Together, Indonesia’s seagrasses and mangroves conservatively account for 3.4 Pg C, roughly 17 % of the world’s blue carbon reservoir. Continued degradation and destruction of these wetlands has important consequences for CO2 emissions and dissolved carbon exchange with adjacent coastal waters. We estimate that roughly 29,040 Gg CO2 (eq.) is returned annually to the atmosphere–ocean pool. This amount is equivalent to about 3.2 % of Indonesia’s annual emissions associated with forest and peat land conversion. These results highlight the urgent need for blue carbon and REDD+ projects as a means to stem the decline in wetland area and to mitigate the release of a significant fraction of the world’s coastal carbon stores.  相似文献   

2.
The loss of carbon through root respiration Is an Important component of grassland carbon budgets. However, few data are available concerning the contribution of root respiration to total soil respiration in grasslands in China. We Investigated seasonal variations of soil respiration rate, root blomaaa, microbial blomaaa C and organic C content of the soil In a semi-arid Leymus chinensis (Trin.) Tzvel. grassland of northeast China during the 2002 growing season (from May to September). The linear regression relationship between soil respiration rate and root blomaaa was used to determine the contribution of root respiration to total soil respiration. Soil respiration rate ranged from 2.5 to 11.9 g C/m^2 per d with the maximum in late June and minimum In September. The microbial blomaaa C and organic C content of the soil ranged from 0.3 to 1.5 g C/m^2 and from 29 to 34 g C/kg respectively. Root blomaaa had two peaks, In early June (1.80 kg/m^2) and mid-August (1.73 kg/m^2). Root respiration rate peaked In mid-August (6.26 g C/m^2 per d), whereas microbial respiration rate peaked In late June (7.43 g C/m^2 per d). We estimated that the contribution of root respiration to total soil respiration during the growing season ranged from 38% to 76%.  相似文献   

3.
Land use change and the global carbon cycle: the role of tropical soils   总被引:35,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

4.
The main determinants of soil respiration were investigated in 11 forest types distributed along an altitudinal and thermal gradient in the southern Italian Alps (altitudinal range 1520 m, range in mean annual temperature 7.8°C). Soil respiration, soil carbon content and principal stand characteristics were measured with standardized methods. Soil CO2 fluxes were measured at each site every 15–20 days with a closed dynamic system (LI‐COR 6400) using soil collars from spring 2000 to spring 2002. At the same time, soil temperature at a depth of 10 cm and soil water content (m3 m?3) were measured at each collar. Soil samples were collected to a depth of 30 cm and stones, root content and bulk density were determined in order to obtain reliable estimates of carbon content per unit area (kg C m?2). Soil respiration and temperature data were fitted with a simple logistic model separately for each site, so that base respiration rates and mean annual soil respiration were estimated. Then the same regression model was applied to all sites simultaneously, with each model parameter being expressed as a linear function of site variables. The general model explained about 86% of the intersite variability of soil respiration. In particular, soil mean annual temperature explained the most of the variance of the model (0.41), followed by soil temperature interquartlile range (0.24), soil carbon content (0.16) and soil water content (0.05).  相似文献   

5.
松嫩平原农田土壤有机碳变化及固碳潜力估算   总被引:6,自引:0,他引:6  
姜蓝齐  臧淑英  张丽娟  孙丽  阎炳和 《生态学报》2017,37(21):7068-7081
基于1979—1985年全国第二次土壤普查和2015年实地采样数据,利用土壤类型法计算了近35年来松嫩平原及其各县农田表层土壤有机碳密度和土壤碳库储量;并分析了松嫩平原农田土壤有机碳密度的空间分布及变化特征;利用饱和值法对松嫩平原及其各县市农田土壤有机碳量的变化趋势进行拟合,估算其农田土壤的固碳潜力。结果表明:(1)2015年松嫩平原农田表层土壤有机碳密度平均值为1.61 kg/m~2,近35年来约有81.59%的农田土壤有机碳密度呈下降趋势,集中分布在松嫩平原北部、东部和东南部地区,以富裕县东部、依安县中部、肇东县西部、扶余县西部等地区土壤有机碳密度下降幅度最大;(2)2015年松嫩平原农田表层土壤有机碳库总储量为233.63 Tg,比全国第二次土壤普查减少了32.62 Tg;(3)2015年松嫩平原农田表层土壤总固碳潜力为-32.7 TgC,呈现出"碳源"趋势,农田土壤单位面积固碳潜力平均值为-1.793×10~(-3)Tg/km~2。  相似文献   

6.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

7.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

8.
The organic carbon (C) stocks contained in peat were estimated for a wetland‐rich boreal region of the Mackenzie River Basin, Canada, using high‐resolution wetland map data, available peat C characteristic and peat depth datasets, and geostatistics. Peatlands cover 32% of the 25 119 km2 study area, and consist mainly of surface‐ and/or groundwater‐fed treed peatlands. The thickness of peat deposits measured at 203 sites was 2.5 m on average but as deep as 6 m, and highly variable between sites. Peat depths showed little relationship with terrain data within 1 and 5 km, but were spatially autocorrelated, and were generalized using ordinary kriging. Polygon‐scale calculations and Monte Carlo simulations yielded a total peat C stock of 982–1025 × 1012 g C that varied in C mass per unit area between 53 and 165 kg m?2. This geostatistical approach showed as much as 10% more peat C than calculations using mean depths. We compared this estimate with an overlapping 7868 km2 portion of an independent peat C stock estimate for western Canada, which revealed similar values for total peatland area, total C stock, and total peat C mass per unit area. However, agreement was poor within ~875 km2 grids owing to inconsistencies in peatland cover and little relationship in peat depth between estimates. The greatest disagreement in mean peat C mass per unit area occurred in grids with the largest peatland cover, owing to the spatial coincidence of large cover and deep peat in our high‐resolution assessment. We conclude that total peat C stock estimates in the southern Mackenzie Basin and perhaps in boreal western Canada are likely of reasonable accuracy. However, owing to uncertainties particularly in peat depth, the quality of information regarding the location of these large stocks at scales as wide as several hundreds of square kilometers is presently much more limited.  相似文献   

9.
周文昌  牟长城  刘夏  顾韩 《生态学报》2012,32(20):6387-6395
火干扰在湿地生态系统中起着重要的作用,尽管湿地占全球陆地生态系统很小一部分,却是陆地生态系统一个重要的碳汇。然而关于火干扰对我国小兴安岭森林沼泽生态系统土壤碳库影响的研究鲜有报道。因此选取两种森林沼泽典型地段进行土壤取样,研究火干扰对小兴安岭白桦(Betula platyphylla)沼泽和落叶松(Larix gmelinii)-苔草(Carex schmidtii)沼泽地表凋落物和土壤碳储量(0—50 cm)的影响。研究结果表明:①重度火烧使得白桦沼泽地表凋落物量和碳储量降低了36.36%(0.50 kg/m2)和35.52%(0.23 kg C/m2),而轻度火烧无显著影响;轻度火烧和重度火烧落叶松-苔草沼泽地表凋落物量和碳储量分别减少了45.32%(0.99 kg/m2)和44.66%(0.42 kg C/m2)、50.42%(1.10 kg/m2)和49.71%(0.47 kg C/m2);②白桦沼泽和落叶松-苔草沼泽两者对照样地、轻度火烧样地、重度火烧样地的土壤碳储量(0—50 cm)分别为(23.55±6.34)kg C/m2、(18.50±8.16)kg C/m2、(32.50±7.22)kg C/m2和(20.89±2.59)kg C/m2、(23.52±16.03)kg C/m2、(21.75±6.60)kg C/m2,然而火干扰对两种森林沼泽土壤碳储量(0—50 cm)影响不显著。研究结果可为我国东北开展森林湿地计划火烧和碳管理提供理论依据。  相似文献   

10.
Boreal regions store most of the global terrestrial carbon, which can be transferred as dissolved organic carbon (DOC) to inland waters with implications for both aquatic ecology and carbon budgets. Headwater riparian zones (RZ) are important sources of DOC, and often just a narrow ‘dominant source layer’ (DSL) within the riparian profile is responsible for most of the DOC export. Two important questions arise: how long boreal RZ could sustain lateral DOC fluxes as the sole source of exported carbon and how its hydromorphological variability influences this role. We estimate theoretical turnover times by comparing carbon pools and lateral exports in the DSL of 13 riparian profiles distributed over a 69 km2 catchment in northern Sweden. The thickness of the DSL was 36 ± 18 (average ± SD) cm. Thus, only about one‐third of the 1‐m‐deep riparian profile contributed 90% of the lateral DOC flux. The 13 RZ exported 8.7 ± 6.5 g C m?2 year?1, covering the whole range of boreal stream DOC exports. The variation could be explained by local hydromorphological characteristics including RZ width (R2 = 0.90). The estimated theoretical turnover times were hundreds to a few thousands of years, that is there is a potential long‐lasting supply of DOC. Estimates of net ecosystem production in the RZ suggest that lateral fluxes, including both organic and inorganic C, could be maintained without drawing down the riparian pools. This was supported by measurements of stream DO14C that indicated modern carbon as the predominant fraction exported, including streams disturbed by ditching. The transfer of DOC into boreal inland waters from new and old carbon sources has a major influence on surface water quality and global carbon balances. This study highlights the importance of local variations in RZ hydromorphology and DSL extent for future DOC fluxes under a changing climate.  相似文献   

11.
The carbon balance of a winter wheat crop in Lonzée, Belgium, was assessed from measurements carried out at different spatial and temporal scales between November 2004 and August 2005. From eddy covariance measurements, the net ecosystem exchange was found to be ?0.63 kg C m?2 and resulted from the difference between gross primary productivity (GPP) (?1.58 kg C m?2) and total ecosystem respiration (TER) (0.95 kg C m?2). The impact of the u* threshold value on these fluxes was assessed and found to be very small. GPP assessment was partially validated by comparison with an estimation scaled up from leaf scale assimilation measurements. Soil respiration (SR), extrapolated from chamber measurements, was 0.52 kg C m?2. Net primary productivity, assessed from crop sampling, was ?0.83 kg C m?2. By combining these fluxes, the autotrophic and heterotrophic components of respiration were deduced. Autotrophic respiration dominated both TER and SR. The evolution of these fluxes was analysed in relation to wheat development.  相似文献   

12.
Biomass and carbon storage of the North American deciduous forest   总被引:1,自引:0,他引:1  
Field measures of tree and shrub dimensions were used with established biomass equations in a stratified, two-stage cluster sampling design to estimate above-ground ovendry woody biomass and carbon storage of the eastern deciduous forest of North America. Biomass averaged 8.1 ± 1.4 (95% C.I.) kg/m2 and totaled 18.1 ± 3.1 (95% C.I.) gigatons. Carbon storage averaged 3.6 ± 0.6 (95% C.I.) kg/m2 and totaled 8.1 ± 1.4 (95% C.I.) gigatons. These values are lower than previous estimates commonly used in the analysis of the global carbon budget which range from 17.1 to 23.1 kg/m2 for biomass and 7.7 to 10.4 kg/m2 for carbon storage. These new estimates for the deciduous forest, together with earlier work in the boreal forest begin to reveal a pattern of overestimation of global carbon storage by vegetation in analyses of the global carbon budget. We discuss reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle.  相似文献   

13.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

14.
We evaluated how three co‐occurring tree and four grassland species influence potentially harvestable biofuel stocks and above‐ and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m?2 or 394 g C m?2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m?2 or 137 g C m?2 yr). Quercus ellipsoidalis accrued 850 g C m?2, Q. macrocarpa 370 g C m?2, Poa pratensis 390 g C m?2, Solidago canadensis 132 g C m?2, and Lespedeza capitata 283 g C m?2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ?21.3 to +169.8 g C m?2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground.  相似文献   

15.
S.J. Kao  K.K. Liu 《Biogeochemistry》1997,39(3):255-269
Concentrations of dissolved and particulate organic carbon (DOC & POC) in river waters were measuredduring 1993–1994 in the Lanyang Hsi watershed, which representsa typical small Oceania river. The DOC concentrations varied in the range of 0.5–4 mg/l during non-typhoon period, but rose to as highas 8 mg/l during Typhoon Tim in July, 1994. Based on the log-linearrelationship between the DOC load and the discharge rate, weestimated the DOC export to be 3.4 ± 0.6 ktC/yr,and the DOC yield to be 4.1 ± 0.7 gC/m2/yr,which is considerably higher than a former estimate (ca.0.1 gC/m2/yr) for the Oceania. On the other hand, the DOC yield is less than the concurrent POC yield (21.7 ± 4.7gC/m2/yr) by a factor of five, but most of theexported POC is fossil carbon. Under the assumption that the suspended sediments contain a mean fossil POC content of0.5%, the nonfossil POC yield was calculated to be 4.6± 3.0 gC/m2/yr, comparable to theDOC yield. Since DOC and nonfossil POC are directly related to theecosystem, their combined fluxes give a biogenic organic carbonyield of 8.7 ± 3.1 gC/m2/yr.  相似文献   

16.
Natural peatlands accumulate carbon (C) and nitrogen (N). They affect the global climate by binding carbon dioxide (CO2) and releasing methane (CH4) to the atmosphere; in contrast fluxes of nitrous oxide (N2O) in natural peatlands are insignificant. Changes in drainage associated with forestry alter these greenhouse gas (GHG) fluxes and thus the radiative forcing (RF) of peatlands. In this paper, changes in peat and tree stand C stores, GHG fluxes and the consequent RF of Finnish undisturbed and forestry‐drained peatlands are estimated for 1900–2100. The C store in peat is estimated at 5.5 Pg in 1950. The rate of C sequestration into peat has increased from 2.2 Tg a‐‐1 in 1900, when all peatlands were undrained, to 3.6 Tg a‐‐1 at present, when c. 60% of peatlands have been drained for forestry. The C store in tree stands has increased from 60 to 170 Tg during the 20th century. Methane emissions have decreased from an estimated 1.0–0.5 Tg CH4‐‐C a‐‐1, while those of N2O have increased from 0.0003 to 0.005 Tg N2O‐‐N a‐‐1. The altered exchange rates of GHG gases since 1900 have decreased the RF of peatlands in Finland by about 3 mW m‐‐2 from the predrainage situation. This result contradicts the common hypothesis that drainage results in increased C emissions and therefore increased RF of peatlands. The negative radiative forcing due to drainage is caused by increases in CO2 sequestration in peat (‐‐0.5 mW m‐‐2), tree stands and wood products (‐‐0.8 mW m‐‐2), decreases in CH4 emissions from peat to the atmosphere (‐‐1.6 mW m‐‐2), and only a small increase in N2O emissions (+0.1 mW m‐‐2). Although the calculations presented include many uncertainties, the above results are considered qualitatively reliable and may be expected to be valid also for Scandinavian countries and Russia, where most forestry‐drained peatlands occur outside Finland.  相似文献   

17.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

18.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

19.
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years.  相似文献   

20.
1. Over the last 30 years, many investigations have been performed on the dynamics of bacteria and organic matter in the Breitenbach, a first‐order stream in central Germany. The data now available allow a synthesis of the role of bacteria in the carbon budget, as an example of the general importance of bacteria in stream ecosystems. 2. Comparing measured and estimated inputs and outputs to the ecosystem, the organic matter budget of the Breitenbach is fairly balanced: 1.84 kg C m?2 year?1 (sum of inputs) versus 1.88 kg C m?2 year?1 (sum of outputs). No major missing link remains. 3. The basis of the food web in the Breitenbach is mainly allochthonous organic matter (dissolved and particulate 1.02 and 0.42 kg C m?2 year?1, respectively). Autochthonous gross primary production is 0.4 kg C m?2 year?1. Most of the organic matter leaves the stream via transport to the River Fulda (dissolved and particulate 0.74 and 0.34 kg C m?2 year?1, respectively), the rest by respiration (0.80 kg C m?2 year?1 or 43% of total outputs). 4. Bacteria constitute an important part (36%) of heterotrophic biomass (average: 0.004 kg m?2 bacterial C of 0.011 kg m?2 total heterotrophic C). Bacteria also account for the major fraction (71%) of heterotrophic production: 0.20 of 0.28 kg C m?2 year?1 total heterotrophic production. Bacterial production in the Breitenbach is similar in magnitude to the estimate of photoautotrophic net primary production: both approximately 0.20 kg C m?2 year?1. 5. Protozoa, the main consumers of bacteria in the Breitenbach, consume approximately one‐third of bacterial production (0.07 kg C m?2 year?1). Small metazoa (meiofauna, <0.5 mm) play a lesser role in the consumption of bacteria, consuming <0.01 kg bacterial C m?2 year?1. Larger metazoa (macrofauna, >0.5 mm) consume approximately 10% of bacterial production. Although this is a considerable amount of the carbon resources needed by the macrofauna (0.02 kg C m?2 year?1 of bacterial production versus 0.06 kg C m?2 year?1 macrofauna production plus respiration), the carbon demand of the macrofaunal community is met to a larger extent by particulate organic matter than by bacteria. 6. Bacteria are the main decomposers in the Breitenbach. They account for 78% of heterotrophic respiration (0.47 of 0.60 kg C m?2 year?1) and 59% of total respiration (0.47 of 0.80 kg C m?2 year?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号