首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Impacts of salinity become severe when the soil is deficient in oxygen. OxygaUon (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na^+ and CI^- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na^+ or CI^- concentration. Oxygation invariably increased, whereas salinity reduced the K^+: Na^+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

3.
4.
Previous studies have shown phase to bioceramics can that using ZrO2 as a second significantly increase the bonding strength of plasma-sprayed composite material. In the present study, micro-roughened titanium dioxide/ zirconia (TiO2/ZrO2) (30 wt% ZrO2) coating and TiO2 coating were plasma-sprayed onto Ti plates. The microstructural characteristics and mechanical properties of both coatings were investigated. Furthermore, the biological behavior and osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) on both TiO2/ZrO2 and TiO2 coatings were compared. The results indicated that the shear bond strength and microhardness of TiO2/ZrO2 coating were statistically higher than those of TiO2 coating. Scanning electron microscope observation revealed that more irregularly shaped protuberances and denser pores were formed on the surface of TiO2/ ZrO2 coating compared with those of TiO2 coating. Further comparative analysis of HBMSC proliferation and osteogenic differentiation on both coatings showed that significantly higher cellular alkaline phosphatase activity and expression levels of Runx2 and Osterix at day 10 after osteogenic culture were found on TiO2/ZrO2 coating compared with TiO2 coating, while no statistically significant difference in cell proliferation and extracellular calcium deposition was observed. The present study suggests that TiO2/ZrO2 coating may be favorable for dental implant applications.  相似文献   

5.
Alpha-lipoic acid (oL-LA) is a potent antioxidant that acts as an essential cofactor in mitochondrial dehydrogenase reac- tions, α-LA has been shown to possess anti-inflammatory and cytoprotective properties, and is used to improve symptoms of diabetic neuropathy. However, the role of α-LA in stem cell differentiation and the underlying molecular mechanisms remain unknown. In the present study, we showed that α-LA significantly promoted dimethyl sulfoxide (DMSO)-induced cardiomyogenic differentiation of mouse embryonic carcin- oma P19 cells. α-LA dose dependently increased beating embryonic body (EB) percentages of DMSO-differentiated P19 cells. The expressions of cardiac specific genes TNNT2, Nkx2.5, GATA4, MEF2C, and MLC2V and cardiac isoform of troponin T (cTnT)-positively stained cell population were significantly up-regulated by the addition of α-LA. We also demonstrated that the differentiation time after EB formation was critical for α-LA to take effect. Interestingly, without DMSO treatment, α-LA did not stimulate the cardi- omyogenic differentiation of P19 cells. Further investigation indicated that collagen synthesis-enhancing activity, instead of the antioxidative property, plays a significant role in the cardiomyogenic differentiation-promoting function of α-LA. These findings highlight the potential use of α-LA for regen- erative therapies in heart diseases.  相似文献   

6.
7.
Mesenchymal stem cells (MSCs) have been widely used in allogeneic stem cell transplantation. We compared im- munologic and hematopoietic characteristics of MSCs derived from whole human umbilical cord (UC), as well as from different sections of UCs, including the amniotic membrane (AM), Wharton's jelly (WJ), and umbilical vessel (UV). Cell phenotypes were examined by flow cytometry. Lymphocyte transformation test and mixed lymphocyte reaction were performed to evaluate the immuno-modulatory activity of MSCs derived from UCs. The mRNA expression of cytokines was detected by real- time polymerase chain reaction. Hematopoietic function was studied by co-culturing MSCs with CD34+ cells iso- lated from cord blood. Our results showed that MSCs separated from these four different sections including UC, W J, UV, and AM had similar biological characteristics. All of the MSCs had multi-lineage differentiation ability and were able to differentiate into osteoblasts, adipocytes, and chondrocytes. The MSCs also inhibited the proliferation of allogeneic T cells in a dose-dependent manner. The relative mRNA expression of cytokines was examined, and the results showed that UCMSCs had higher interleukin-6 (IL6), ILll, stem cell factor, and FLT3 expression than MSCs derived from specific sections of UCs. CD34+ cells had high propagation efficiencies when co-cultured with MSCs derived from different sections of UCs, among which UCMSCs are the most efficient feeding layer. Our study demonstrated that MSCs could be isolated from whole UC or specific sections of UC with similar immuno- modulation and hematopoiesis supporting characteristics.  相似文献   

8.
Arenicola cristata, a marine annelid, is a wellknown and prized traditional Chinese medicine. However, the serine protease gene of A. cristata has not been cloned yet. In this study, a novel protease ofA. cristata was cloned, sequenced, and expressed in Escherichia coli, and the functions of this recombinant protease were also investigated. The whole complementary DNA (cDNA) of this novel protease was of 980 bp in length and consisted of an open reading frame of 861 bp encoding 286 aa. Sequence analysis of the deduced amino acid sequence revealed that the protease belongs to the serine protease family. The active enzyme of the pro posed A. cristata protease is composed of a signal peptide, a propeptide, and a mature polypeptide. The molecular weight of the recombinant mature protein was 26 kDa after overexpression in E. coli. The recombinant pro tein significantly inhibited cell growth and induced cell apoptosis of esophageal squamous cell carcinoma (ESCC) in vitro, and reduced tumorigenicity in vivo. Furthermore, administration of the recombinant protein led to the activa tion of caspase9 as well as downregulation of Mcl1 and Bcl2. Taken together, our findings indicated that the recom binant serine protease ofA. cristata could inhibit ESCC cell growth by mitochondrial apoptotic pathway and might act as a potential pharmacological agent for ESCC therapy.  相似文献   

9.
10.
目的:探讨电针刺激对局灶性脑缺血大鼠内源性神经干细胞的激活作用以及对大鼠神经功能的影响。方法:将大鼠随机分为2组(n=20):单纯缺血组和电针刺激组。单纯缺血组大鼠建模成功后不给予任何干预,电针刺激组大鼠给予合谷、足三里电针刺激,然后免疫组化观察两组大鼠海马齿状回、侧脑室室下回神经干细胞的增殖和分化情况,以及两组大鼠神经功能的恢复。结果:电针刺激组大鼠侧脑室室下带、海马齿状回颗粒下层神经干细胞增殖活跃,数目多于单纯缺血组,差异有统计学意义(P〈0.05),神经功能评分改善好于单纯缺血组(P〈0.05)。结论:电针刺激能够促进局灶性脑缺血大鼠内源性神经干细胞的增生和分化,从而促进大鼠神经功能康复。  相似文献   

11.
Glioma is one of the most highly angiogenic tumors, and glioma stem cells (GSCs) are responsible for resistance to chemotherapy and radiotherapy, as well as recurrence after operation. Stathmin is substantial for mitosis and plays an important role in proliferation and migration of glioma-derived endothelial cells. However, the relationship between stathmin and GSCs is incompletely understood. Here we isolated GSCs from glioma cell lines U87MG and U251, and then used siRNA targeting stathmin for silen- cing. We showed that silencing of stathmin suppressed the proliferation, increased the apoptosis rate, and arrested the cell cycle at G2/M phase in GSCs. Silencing of stathmin in GSCs also resulted in inhibited the migration/invasion as well as the capability of vasculogenic mimicry. The suscep- tibUity of GSCs to temozolomide was also enhanced by stathmin silencing. Our findings suggest stathmin as a po- tential target in GSCs for glioma treatment.  相似文献   

12.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

13.
The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and nuclear-encoded proteins. During the past few years, extensive proteomic and genetic research on the higher plant NDH complex has been carried out, resulting in identification of several novel nuclear-encoded subunits. In addition, a number of auxiliary proteins, which mainly regulate the expression of chloroplast-encoded ndh genes as well as the assembly and stabilization of the NDH complex, have been discovered and characterized. In the absence of detailed crystallographic data, the structure of the NDH complex has remained obscure, and therefore the role of several NDH-associated nuclear-encoded proteins either as auxiliary proteins or structural subunits remains uncertain. In this review, we summarize the current knowledge on the subunit composition and assembly process of the chloroplast NDH complex. In addition, a novel oligomeric structure of NDH, the PSI/NDH supercomplex, is discussed.  相似文献   

14.
15.
The baculovirus P 10 protein has always represented a mystery in the field of insect virology. Like the baculovirus polyhedrin protein it is expressed at high levels very late in infection. Homologues of the Autographa californica nucleopolyhedrovirus p10 gene are conserved in all Alphabaculoviruses and in other viruses of lepidopteran hosts yet is completely dispensable for virus replication and transmission. PIO is a microtubule interacting protein whose expression has been associated with the formation of a variety of complex and extensive cytoplasmic and nuclear structures. PIO has been associated with a number of roles during infection ranging from the formation of virus occlusion bodies, to affecting the rate of cellular and/or nuclear lysis during the final stages of the virus replication cycle. In this article we review recent work aimed at understanding the role of this enigmatic protein, putting them into context with recent advances in understanding of protein structure and function. We look back at a number of historical studies and observations, reanalysing their conclusions based on recent data and our own observations. The role of the P 10 protein during baculovirus replication remains elusive, however, novel avenues of investigation have been identified that will, we are sure, eventually lead to an understanding of this protein.  相似文献   

16.
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclearencoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V/itorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.  相似文献   

17.
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.  相似文献   

18.
D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xyiose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg^2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.  相似文献   

19.
Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.  相似文献   

20.
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号