首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
细胞/细菌及其相互作用研究对于生命科学、药物研发、医学诊疗等领域的研究具有重要意义。微流控芯片分析技术因微环境可控、生物相容性好、检测并行性、微型化等特性,正发展成为细胞/细菌及其相互作用研究的高效手段。本文在简要介绍基于微流控芯片分析技术的细胞-细菌分析方法和技术基础之上,对微流控芯片上细胞-细菌相互作用模型的建立进行了讨论,重点针对细胞-细菌及其相互作用过程的芯片检测进行了综述,尤其对芯片集成的光电检测技术及其测试效果进行总结和比较。通过芯片集成微流体控制、多种光电传感监测模块,使微流控芯片分析技术成为细胞/细菌及其相互作用过程分析和检测的支撑平台和优势手段。最后,对微流控光电检测技术在细胞-细菌相互作用检测中面临的挑战及发展趋势进行了讨论和展望。  相似文献   

2.
群体感应(quorum sensing,QS)是一种依赖菌群密度的细菌交流系统。在探究细菌群体感应系统的调控机制中,对QS信号分子的鉴别和检测是不可或缺的环节,其对生命科学、药学等领域涉及细菌等微生物的相互作用、高效检测和作用机制解析等具有重要的参考意义。本文在总结不同类型细菌QS信号分子来源和结构的基础上,对QS信号分子的光电检测方法和技术进行了综述,重点对光电传感检测的敏感介质、传感界面、传感机制及测试效果进行探讨,同时关注了将微流控芯片分析技术应用于细菌QS信号分子原位监测的相关研究进展。  相似文献   

3.
评价全自动压电体声波阻抗生物传感器血液培养系统的应用价值,并与Bactec9120血培养系统相比较。将2005年7~12月临床标本407例分别同时接种于2种不同的血培养系统中进行培养,对其阳性检出率、阳性检出时间、假阳性率及相关因素进行综合性评估。407份标本全自动压电体声波阻抗生物传感器血液培养系统检测出阳性标本58株,阳性率为14.3%,平均检出时间为(11.58±7.62)h;Bactec9120血培养系统培养阳性菌株61株,阳性率为15.0%,平均检出时间为(18.71±12.89)h。经统计学处理,两种检测方法阳性率无显著性差异(χ2=0.089,P>0.5),但检出时间有显著性差异(t=3.64,P<0.001)。全自动压电体声波阻抗生物传感器血液培养系统快速、简单、准确、便宜,可在各医院推广使用。  相似文献   

4.
目的 QuickTargSeq全集成法医DNA现场快速检测系统是国内首台自主研制的现场快检仪,可应用于InDel族群推断检测,2 h左右完成“样本进-结果出”的快速自动化InDel分型。本文对InDel族群推断微流控芯片检测体系的性能进行评估,以期为实践应用提供参考。方法 使用InDel族群推断微流控芯片检测体系,对体系的灵敏度、干扰物耐受性、成功率、分型准确率、精确性、准确性、峰平衡性及检材适应性进行验证评估,同时对测试样本的族群来源进行推断。结果 138份样本的全集成检测成功率为95.65%,分型准确率为98.85%;DNA模板量≥5 ng时,可获得完整InDel分型,口腔拭子样本最佳采集次数为口腔内壁左右两侧各刮擦8次,血卡样本最佳检测方式为6片(Φ=2 mm);所有基因座的平均杂合子峰高比值为0.86;10次运行的等位基因分型标准物(allelic ladder)片段大小标准差均在0.3 bp以内,测试样本等位基因和相应的等位基因分型标准物之间的片段准确性均在0.5 bp以内。结论 该体系可实现对口腔拭子、血卡、唾液卡及烟蒂样本的准确分型,能够准确推断样本的族群来源。  相似文献   

5.
陈钰  刘仲明  王捷 《生物磁学》2009,(16):3166-3168,3197
联合检测几种肿瘤标志物,在肿瘤早期诊断中具有重要的临床应用价值。随着纳米技术、流动注射分析技术、微流控技术以及丝网印刷术的迅猛发展,电化学免疫传感器可以在肿瘤标志物的检测中扮演越来越重要的角色。本文主要介绍了电化学免疫传感器的原理及其在肿瘤蛋白标志物检测中的应用情况,并介绍了纳米材料、流动注射分析、微流控等技术在肿瘤标志物免疫传感器中的运用,展望了电化学免疫传感器的前景。  相似文献   

6.
传染病的快速检测是传染病预防控制的重要环节,其中现场快速检测对于及时有效控制传染病疫情尤为关键。相比于传统检测方法,电化学免疫传感器具有操作简单、快速、灵敏、准确、设备可小型化等优势,可用于传染病快速检测。简要综述了近年来电化学免疫传感器在传染病快速检测中的应用研究进展,重点阐述了该类传感器在现场检测中的主要贡献和不足之处,以及免疫磁分离技术与电化学传感检测相结合在传染病快速检测方面的优势。  相似文献   

7.
目的 构建Y染色体短串联重复序列(Y-STR)微流控芯片扩增检测试剂,并进行性能验证,实现Y-STR基因座的快速全集成检测。方法 使用Y-STR微流控芯片检测体系,对其灵敏度、成功率和分型准确率、峰平衡性、精准性和准确性、检材适应性、混合物检测能力和抗抑制性进行验证评估。结果 DNA标准品9948的模板量≥8 ng,血卡片数≥3片以及口腔拭子刮擦次数≥7次时可获得Y-STR完整分型;165份样本的全集成检测成功率为91.52%,分型准确率为99.74%;不同荧光通道之间的峰高比值为89.81%;10次运行的等位基因分型标准品的片段大小标准差均在0.5 bp以内,20份样本全集成检测的等位基因片段和相应的等位基因标准品之间的片段准确性均在0.5 bp以内;能够对口腔拭子、血卡、唾液卡、烟蒂、血棉签、布片精斑等检材进行准确分型;混合样本中较小贡献者与较大贡献者在1∶3的比例时可获得完整基因分型;在不同浓度的腐殖酸(50~400 mg/L)、靛蓝(20~100 nmol/L)、血红蛋白(100~500μmol/L)等抑制物的干扰下,该体系可获得完整基因分型。结论 该体系可应用于国产Quick...  相似文献   

8.
分子印迹因其材料结构的稳定性及靶标物识别的特异性而被广泛应用于生化分离分析的相关领域。近年来,将具有选择性捕获、分离和富集靶标物等优势的分子印迹技术与生化传感检测技术有机结合,是目前细菌等微生物高效检测领域备受关注的研究热点。本文就分子印迹技术在细菌分析中的印迹方法、分析检测技术和典型应用等方面的最新进展进行综述。首先介绍了细菌分子印迹原理,对表面印迹的材料以及直接压印、间接印迹和电聚合等制备方法进行了总结和归纳;重点对基于荧光、电化学、石英晶体微天平(QCM)等检测模式的细菌印迹传感监测在细菌分析检测及其与微流控芯片技术耦合的应用和进展进行了综述;最后,提出了存在的挑战及发展的趋势。  相似文献   

9.
目的 构建用于检测L-乳酸的新型电化学适配体传感器。方法 基于金钯-掺氮多壁碳纳米管纳米复合材料(Au/Pd-N-MWCNTs)修饰的玻碳电极,通过三螺旋分子开关(triple-helix molecular switch,THMS)触发具有RNA剪切活性的Pb2+辅助的脱氧核酶(DNAzyme)对电极表面固定化信号探针的循环剪切效应,实现L-乳酸的超灵敏电化学检测。采用差分脉冲伏安法(DPV)记录电流信号变化。结果 信号探针浓度4 μmol/L、Pb2+浓度4 μmol/L、DNAzyme剪切孵育时间60 min为传感器最优测试条件。在最优实验条件下,该L-乳酸传感器线性范围为1~20 mmol/L,检出限为0.51 mmol/L。此外,该适配体传感器具有优异的稳定性(RSD=4.56%)、重现性(RSD=2.80%)和选择性。在人血清样本中检测L-乳酸时回收率为105.60%~110.80%,RSD为2.35%~4.56%,与传统方法具有较好的一致性。结论 该适配体传感器能实现L-乳酸的超灵敏检测,在生物医学诊断、食品工业和环境监测等领域具有广泛的应用前景。  相似文献   

10.
近年来,CRISPR/Cas系统已经成为转录调控和基因组编辑的重要工具。除了在基因编辑领域的贡献,CRISPR/Cas系统独特的靶核酸顺式切割和非特异性单链核酸反式切割能力,在开发核酸检测的新型生物传感器方面展现出巨大潜力。构建基于CRISPR/Cas系统高灵敏度生物传感器的关键通常依赖其与不同信号扩增策略,诸如核酸扩增技术或特定信号转导方法的结合。基于此,本文旨在通过介绍不同类型的CRISPR/Cas系统,全面概述基于该系统的核酸检测生物传感器的研究进展,并重点对结合核酸扩增技术(PCR、LAMP、RCA、RPA和EXPAR)、灵敏的信号转导方法(电化学和表面增强拉曼光谱)和特殊结构设计生物传感的三大类型信号放大策略的CRISPR/Cas生物传感器进行总结和评论。最后,本文对目前的挑战以及未来的前景进行展望。  相似文献   

11.
Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.  相似文献   

12.

Background

Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization.

Methods

In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep.

Results

The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation.

Conclusion

Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA with a size range suitable for delivery to the lower respiratory airways.  相似文献   

13.
A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4‐hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co‐exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass adsorption or change of viscoelasticity in the sensing layer. Intermediate hydrogel layers have been proven to be useful to immobilize capture molecules or ligands corresponding to the analyte. However, the SAW signal response strongly depends on the morphology of the hydrogel due to different relative changes of its acoustomechanical parameters such as viscoelasticity and density. In this work five aminodextrans (AMD) and one diamino polyethylene glycol (DA-PEG) were used as intermediate hydrogel layers. Sensors with immobilized streptavidin and samples containing biotinylated bovine serum albumin were used to exemplify affinity assays based on immobilized capture molecules for protein detection. The effects of the three-dimensional AMDs and the two-dimensional (2D) DA-PEG on the SAW signal response were investigated. The signal height decreased with increasing molar mass and increasing amount of immobilized AMD. Consequently, thin hydrogel layers are ideal to obtain optimum signal responses in this type of assay, whereas it is not necessarily a 2D hydrogel that gives the best results.  相似文献   

16.
Earlier accounts claim from indirect measurements that the subgenual organ (SGO) in the proximal tibia of the cockroach leg can detect vibrational displacements down to 0.002 mm, two orders of magnitude below the threshold for vertebrate hair cells in the cochlea. The SGO vibration threshold is redetermined here more directly by a new method on a cantilever beam, while controlling for particular acoustic and vibrational artifacts that might have compromised earlier efforts. The threshold is revised upwards to about 0.2 mm in the most sensitive preparation, about the same as cochlea. Recently, it has been determined that the cockroach SGO also has an auditory response, and the data here on subthreshold summation and response-intensity relationships provide further evidence that sound and contact vibration are both sensed by the same receptor neurons. Direct measurements rule out the prevailing hypothesis that sound is detected indirectly as induced vibration of the ground, and also weigh strongly against any significant involvement of generalized leg resonance in acoustic pick-up. The results fit with a recent proposal that the auditory response is direct, and that acoustic fluctuations inside the tracheae may be the primary response mode in the transduction of both vibration and sound. 1994 John Wiley & Sons, Inc.  相似文献   

17.
This work proposes a new online monitoring method for an assistance during laser osteotomy. The method allows differentiating the type of ablated tissue and the applied dose of laser energy. The setup analyzes the laser-induced acoustic emission, detected by an airborne microphone sensor. The analysis of the acoustic signals is carried out using a machine learning algorithm that is pre-trained in a supervised manner. The efficiency of the method is experimentally evaluated with several types of tissues, which are: skin, fat, muscle, and bone. Several cutting-edge machine learning frameworks are tested for the comparison with the resulting classification accuracy in the range of 84–99%. It is shown that the datasets for the training of the machine learning algorithms are easy to collect in real-life conditions. In the future, this method could assist the doctors during laser osteotomy, minimizing the damage of the nearby healthy tissues and provide cleaner pathologic tissue removal.  相似文献   

18.
Arterial pulse wave has been considered as a vital sign in assessment of cardiovascular diseases. Noninvasive pulse sensor with compact structure, immunity to electro‐magnetic interference and high sensitivity is the research focus in recent years. While, optical fiber biosensor is a competitive option to meet these needs. Here, a diaphragm‐based optical fiber pulse sensor was proposed to achieve high‐precision radial pulse wave monitoring. A wearable device was developed, composed of a sports wristband and an aluminum diaphragm‐based optical fiber sensor tip of only 1 cm in diameter, which was highly sensitive to the weak acoustic signal. In particular, coherent phase detection was adopted to improve detection signal‐to‐noise ratio, so as to recover the high‐fidelity pulse waveforms. A clinical experiment was carried out to detect and morphological analyze the pulse waveforms of four subjects, the results of which preliminarily demonstrated the feasibility of pulse diagnosis method. The proposed pulse fiber sensor provides a comfortable way for pulse diagnosis, which is promising in early cardiovascular diseases indicating.  相似文献   

19.
Biosensors based on phage display-derived peptides as biorecognition molecules were used for the detection of cell surface cross-species markers in tissue homogenates. The peptide selected for murine myofibers was immobilized onto the surface of an acoustic wave sensor by biotin-streptavidin coupling. To detect peptide-receptor interaction, the sensors were exposed to muscle and control (kidney, liver, brain) tissue homogenates. The sensor showed a strong response to murine muscle. The amplitudes of the responses to the feline muscle homogenates were lower compared to those of the murine muscle, while the same K(d) indicated that the peptide has cross-species affinity. In contrast, murine kidney, liver and brain homogenates produced insignificant responses. Specificity of the sensor was shown in a blocking experiment, as reduced signal was detected when muscle preparations were preincubated with free peptide. Additionally, when muscle-specific peptide was replaced with two different random control peptides, the sensors produced no response to murine muscle. Suitability of peptide ligands for a variety of species can be evaluated using this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号