首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2‐year study was performed in two sites in southern France to assess the effect of ivermectin residues on the attractiveness of cattle dung to colonizing insects. Insect captures were compared between pitfall traps baited with dung from untreated cattle and dung from cattle that had been treated with a slow‐release (SR) bolus of ivermectin. Cattle dung was collected at different times after treatment (4, 14, 42, 70 and 98 days). Excretion showed a plateau, with levels ranging between 0.688 µg and 1.123 µg ivermectin per gram of wet dung. Faecal residues affected insect captures at both sites. Effects were independent of the time dung was collected after treatment, except for one result subsequent to a severe drought during the baiting period. Ivermectin‐contaminated dung showed a significant attractive effect, with increased captures regardless of the guild to which beetles belonged. This study demonstrates the attractiveness of ivermectin residues over a long period after the treatment of animals. It draws attention to the danger of widespread use of this endectocide‐based SR bolus, which is attributable to the preferential attraction of insects to treated dung, which potentially puts at risk the survival of their offspring.  相似文献   

2.
中国农业昆虫生态调节服务价值估算   总被引:3,自引:1,他引:2  
昆虫是生物多样性最丰富的物种类群,其在维持生态系统功能,维系并保持着自然界的生态平衡,满足人类需求中的具有重要作用。讨论了昆虫生态服务价值的定量估算方法,基于2007年统计数据,计算了我国农牧业生产中昆虫传粉功能、天敌昆虫控害功能和分解作用的服务价值。结果表明,昆虫在我国农业生产中传粉服务价值为6790.30×108元,占其当年农作物生产总经济价值的54.05%;天敌昆虫的控害服务价值为2621.00×108元,占其当年重要作物总经济价值的9.09%;分解昆虫(甲虫)对牧场牛羊排泄物的分解作用的价值远超过90.84×108元。由此估计出了我国2007年农业昆虫生态调节服务总价值超过9502.14×108元,相当于当年国内生产总值GDP的3.7%。显示昆虫所产生的生态调节服务价值,与我国森林或草地生态系统的直接和间接服务价值处于同一数量级,同样具有巨大的经济价值。为保护与利用昆虫生物多样性,发挥其生态服务功能奠定了基础。  相似文献   

3.
Dung beetles form an insect group that fulfils important functions in terrestrial ecosystems throughout the world. These include nutrient cycling through dung removal, soil bioturbation, plant growth, secondary seed dispersal and parasite control. We conducted field experiments at two sites in the northern hemisphere temperate region in which dung removal and secondary seed dispersal were assessed. Dung beetles were classified in three functional groups, depending on their size and dung manipulation method: dwellers, large and small tunnelers. Other soil inhabiting fauna were included as a fourth functional group. Dung removal and seed dispersal by each individual functional group and combinations thereof were estimated in exclusion experiments using different dung types. Dwellers were the most diverse and abundant group, but tunnelers were dominant in terms of biomass. All dung beetle functional groups had a clear preference for fresh dung. The ecosystem services in dung removal and secondary seed dispersal provided by dung beetles were significant and differed between functional groups. Although in absolute numbers more dwellers were found, large tunnelers were disproportionally important for dung burial and seed removal. In the absence of dung beetles, other soil inhabiting fauna, such as earthworms, partly took over the dung decomposing role of dung beetles while most dung was processed when all native functional groups were present. Our results, therefore, emphasize the need to conserve functionally complete dung ecosystems to maintain full ecosystem functioning.  相似文献   

4.
The toxicity of dung from cattle treated with an ivermectin sustained-release bolus was estimated in terms of ivermectin or ivermectin equivalents, using a laboratory bioassay with the dung fly Neomyia cornicina Fabricius (Diptera, Muscidae). The mortalities of flies measured 7 days after feeding for 24 h on dung containing known concentrations of ivermectin (between 0.125 and 1 g ivermectin per gram fresh dung) were compared with the mortalities of insects fed for 24 h on dung from cattle treated 21 days previously with an ivermectin sustained-release bolus. The toxicity of the bolus dung was equivalent to dung containing 0.66 g ivermectin per gram fresh dung. To determine whether insects could differentiate between control dung and dung from bolus-treated cattle, choice-chamber tests were carried out. There was no significant difference in the percentage of females that chose either dung type, suggesting that they were unable to distinguish the dung of bolus-treated cattle from control dung. Results are discussed in relation to the impact that bolus use can have on the insect fauna of cattle dung.  相似文献   

5.
N. M. O'Hea  L. Kirwan  J. A. Finn 《Oikos》2010,119(7):1081-1088
Dung fauna plays an important role in dung decomposition, a key ecosystem process in nutrient cycling in grazed grasslands. The diversity of a three‐species community (dung beetles, dung flies and epigeic earthworms) was systematically manipulated to produce different relative abundance distributions (evenness levels) and the resulting communities were introduced to standardised dung pats in laboratory experiments. Dung decomposition was modelled using an analysis that disentangled species identity effects and the interactions among species that contribute to the diversity effect. This revealed that the net diversity effect was composed of positive (fly–earthworm), negative (beetle–earthworm) and neutral (fly–beetle) effects of species interaction. These pairwise interactions resulted in complex, but systematically varying and predictable effects on dung decomposition as the relative abundances of species changed. Decomposition was consistently greater in communities with higher decomposer biomass. The utility of the adopted analytical approach was emphasised by comparison with an ANOVA that found that dung decomposition did not differ among evenness levels. Thus, the averaging of decomposition across different community structures within evenness levels masked the different effects of species interactions. These results highlight methodological insights into the quantification of diversity–function relationships.  相似文献   

6.
The effects of dung form and condition and of dung beetles on the emergence of seedlings from herbaceous seeds in sika deer dung were examined in a temperate grassland ecosystem dominated by Zoysia japonica and Hydrocotyle maritima. I conducted field experiments to compare seedling emergence between dung exposed to dung beetles and intact dung using both dung pellets and pats during a typical rainy month (June) and the hottest, drier month (August), when large numbers of seeds of the dominant species were present in the dung. The exposed dung was immediately attacked and broken up by dung beetles, whereas dung protected from the beetles remained intact. In June, at least 12 herbaceous species, including Z. japonica, H. maritima, Mazus pumilus, and Plantago asiatica, emerged from the dung, versus at least six species in August. Decomposition rates of the pellets in June and decomposition scores of the pats in June and August were positively correlated with the number of emerging seedlings, suggesting that the acceleration of decomposition by dung beetles can positively affect seed germination. In this system of interactions among sika deer, herbaceous plants, and dung beetles, sika deer dung prevented seeds from germinating, and beetles had an indirect positive effect on seedling emergence by accelerating decomposition of the dung, although the extent of the effect may depend on the dung type, plant species, and environmental factors.  相似文献   

7.
土壤动物是陆地生态系统的重要组分, 在有机质分解过程中具有重要作用。目前有关土壤动物在生态系统分解中的作用研究主要聚焦于植物凋落物的分解, 而对动物粪便分解的研究稀少。本研究在内蒙古典型草原设置了马粪和牛粪分解原位实验, 使用不同孔径的金属隔离网排除不同体型大小的土壤动物, 通过测定大中型土壤动物对畜粪分解过程中质量损失、碳氮含量和微生物呼吸以及土壤养分动态变化的影响, 解析其在分解中的作用。设置5个处理, 即CK, 仅土壤, 无粪; T0, 粪添加+0.425 mm隔离网(排除了粪居型和掘洞型粪金龟和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪居型和掘洞型粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。结果表明: (1)在畜粪分解60天内, 土壤动物对畜粪的干质量损失没有显著的促进作用(P > 0.05); 相反, 在畜粪分解360天, 不隔离土壤动物处理(T3)显著地提高了牛粪干质量损失(P < 0.05), 而降低了马粪干质量损失(P < 0.05)。(2)在畜粪分解的60天内, 畜粪中碳和氮含量下降速度在有土壤动物存在的情况下(T3)快于隔离土壤动物(T0和T1)。(3)两种畜粪添加增加了土壤微生物的呼吸, 且这种增加趋势在实验的第15天和第30天在土壤动物存在时(T3)最明显。(4)与对照(CK)相比, 马粪添加处理提高了土壤速效氮、有机碳的含量和土壤含水量, 且这种增加趋势在排除掘洞型粪金龟(T2)和不排除土壤动物(T3)条件下表现更显著(P < 0.05), 而牛粪添加处理没有明显改变这些指标(P > 0.05)。研究表明, 分解初期粪金龟的取食和活动会改变畜粪的理化性质, 进而影响分解后期土壤生物在畜粪分解中的作用。  相似文献   

8.
1. The decomposition of biological material produces a plethora of volatile organic compounds (VOCs), which are implicated in the foraging behaviour of coprophagous and necrophagous insects. Dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) have an acute olfactory system used to locate food resources. Accordingly, identification of food resource VOCs potentially used in food location is integral to understanding dung beetle foraging ecology. 2. In this study, volatile emissions from dung and carrion of native and introduced animals in New Zealand were analysed using solid‐phase microextraction (SPME) and gas chromatography‐mass spectrometry (GC‐MS). Volatile profiles were compared via principal component analyses (PCAs) and cluster solutions based on attractiveness using canonical discriminant analysis (CDA). 3. A total of 115 compounds were detected from 21 food types. Statistical analyses showed that dung and carrion volatile profiles clustered according to attractiveness to the dung beetle Saphobius edwardsi, and that different dung types formed distinct clusters and grouped separately from carrion. 4. This study suggests that volatile profiles emitted by food resources used by dung beetles are complex, producing distinct odours, which potentially mediate foraging decisions.  相似文献   

9.
Dung beetles provide important ecosystem services in the habitats where they occur. The activity of dung beetles enhances soil nutrient cycling and increases the soil’s ability to absorb and hold water. Consequently, these beetles are particularly important in semi-arid environments. This study analyses the importance of remaining wooded habitat patches (bushland) for the survival of a diverse dung beetle fauna in an otherwise cultivated landscape in semi-arid Tanzania. Dung beetles were sampled by pitfall trapping in maize fields and bushland habitats. In total, 6037 dung beetles (Scarabaeidae: Scarabaeinae), representing 77 species from 25 genera, were collected. Many species, particularly amongst the ball-rollers, showed a clear preference for wooded patches, species richness being significantly higher in the bushland patches than in the cultivated sites. The number of trapped specimens in bushland was also considerably higher than that found in maize fields, although the differences were not significant. In conclusion, bushland fragments appear to have an important conservation value as to maintaining a high diversity and abundance of dung beetles, thereby enhancing the ecosystem services provided by these beneficial insects.  相似文献   

10.
The impacts of land use change on biodiversity and ecosystem functions are variable, particularly in fragmented tropical rainforest systems with high diversity. Dung beetles (Scarabaeinae) are an ideal group to investigate the relationship between land use change, diversity and ecosystem function as they are easily surveyed, sensitive to habitat modification and perform many ecosystem functions. Although this relationship has been investigated for dung beetles in some tropical regions, there has been no study assessing how native dung beetles in Australia's tropical rainforests respond to deforestation, and what the corresponding consequences are for dung removal (a key ecosystem function fulfilled by dung beetles). In this study we investigated the relationship between dung beetle community attributes (determined through trapping) and function (using dung removal experiments that allowed different dung beetle functional groups to access the dung) in rainforest and cleared pasture in a tropical landscape in Australia's Wet Tropics. Species richness, abundance and biomass were higher in rainforest compared to adjacent pasture, and species composition between these land use types differed significantly. However, average body size and evenness in body size were higher in pasture than in rainforest. Dung removal was higher in rainforest than in pasture when both functional groups or tunnelers only could access the dung. Increased dung removal in the rainforest was explained by higher biodiversity and dominance of a small number of species with distinct body sizes, as dung removal was best predicted by the evenness in body size of the community. Our findings suggest that functional traits (including body size and dung relocation behaviour) present in a dung beetle community are key drivers of dung removal. Overall, our results show that deforestation has reduced native dung beetle diversity in Australian tropical landscapes, which negatively impacts on the capacity for dung removal by dung beetles in this region.  相似文献   

11.
Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung‐inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung‐baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide‐free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide‐free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes.  相似文献   

12.
Although there are nearly 500 species of native dung beetles in Australia, most are adapted to small, hard, dry, pelletised marsupial droppings and not to dealing with the large, moist deposits of cattle. In 1788, Governor Arthur Phillip arrived at Botany Bay with five cows, two bulls, 44 sheep and seven horses: this signalled major changes in Australia. Now there are about 27 million cattle, whose annual dung production has a dry matter content of about 42 million tonnes. Until CSIRO introduced exotic dung beetles in the 1960s, the dung of these herbivores sat on the soil surface, sometimes for years, locking up organic matter, smothering pasture and polluting waterways. CSIRO introduced 53 exotic dung beetle species, of which 43 were released to the Australian mainland between 1965 and 1985. Twenty-three of these have become established, many of which have reached the natural limits of their distribution. I consider the reason for the failure of the other 30 species to establish and briefly review previous contributions to examining the role of dung beetles in delivering ecosystem services, noting that much of the published literature concerns laboratory studies. New field data are then examined on the way in which introduced species are transforming dung communities and the ecosystem services they provide. The capacity of deep-tunnelling dung beetles to transform the soil profile is examined along with their effects on pasture production and the flow of nutrients from dung on pasture. The biocontrol capacity of dung beetle activity is considered in relation to the native bush fly, Musca vetustissima, the introduced buffalo fly, Haematobia irritans exigua, and dung-borne intestinal parasites (helminths and Cryptosporidium). The rationale for introducing additional species to Australia is considered.  相似文献   

13.
A 3-year study was performed in southern Alberta, Canada to assess the effect of endectocide residues on the attractiveness of cattle dung to colonizing insects. In 2003 and 2004, insect captures were compared between pitfall traps baited with dung of untreated cattle and paired traps baited with dung of cattle that had been treated 7 days previously with topically applied doramectin, eprinomectin, ivermectin or moxidectin. Faecal residues associated with each compound affected insect captures in both spring and autumn of each year. Effects were detected (P < 0.05) for a total of 94 cases representing 27 insect taxa from 13 families in three orders (Coleoptera, Diptera, Hymenoptera). Two-fold differences in captures were common. Up to six-fold differences were observed. Eleven cases of attraction and 11 cases of repellency were associated with residues of doramectin. Eprinomectin tended to repel insects, with decreased captures for 19 of 29 cases of effect. Ivermectin showed a strong attractive effect, with increased captures for 17 of 25 cases. Moxidectin also showed a strong attractive effect, with increased captures for 17 of 18 cases. Comparisons between compounds suggested that results for doramectin best predicted results for eprinomectin and vice versa. In 2005, insect captures were compared between pitfall traps baited with dung of untreated cattle and traps baited with dung from cattle treated 3, 7 or 14 days previously with topically applied doramectin. Effects were detected in 14 cases plus one case of near significance (P= 0.053). Significant differences between control vs. days 3, 7 and/or 14 dung were detected in nine cases. Residues enhanced captures in seven of these cases. Day 14 dung affected captures in six of these cases. This study shows that endectocide residues can affect the number of insects attracted to colonize and oviposit in dung. Hence, the emergence of their offspring from field-colonized dung of untreated vs. endectocide-treated cattle should not be used as a measure of residue toxicity per se, but rather as a measure of 'insect activity'. Insect activity is a composite measure of residue toxicity, the number and species composition of insect colonists, and the mortality factors (e.g. predation, parasitism, competition) associated with the co-occurrence of these species in the dung pat.  相似文献   

14.
Dung from calves treated with synthetic pyrethroids negatively influenced, in varying degrees, survival, reproduction and size of the common dung fly Neomyia cornicina (Fabricius). This was documented in assays where the coprophagous larvae and adults of N. cornicina were exposed to dung collected from calves dosed with topical preparations of deltamethrin, flumethrin, cyfluthrin, and alpha-cypermethrin. Larval mortality was significantly increased in dung collected up to at least seven days after treatment with deltamethrin, alpha-cypermethrin and cyfluthrin. Alpha-cypermethrin caused significant mortality of adults allowed to feed on moist dung. Nulliparous flies fed for six days on dung collected three days after treatment of calves with alpha-cypermethrin or deltamethrin showed little or no ovarian development. A tendency for a comparable effect with flumethrin was also observed. A connection between ovarian development and inhibition of feeding was indicated by the observation of significantly lowered excretion rates in flies exposed to residues of deltamethrin, alpha-cypermethrin and flumethrin. Larvae that survived exposure to dung from calves dosed with deltamethrin, alpha-cypermethrin, or cyfluthrin gave rise to smaller flies. The effect on adult fly size decreased when larvae were exposed to dung collected at longer times after treatment of the calves. Adult fly size was significantly reduced in dung collected up to 14 days (alpha-cypermethrin) or up to 28 days after treatment (deltamethrin and cyfluthrin). Fluctuating asymmetry of a wing vein character did not reflect the anticipated levels of exposure. The study strongly indicated that the use of synthetic pyrethroids affected the insect dung fauna and that such use may reduce dung decomposition.  相似文献   

15.
1. Greenhouse gas (GHG) emissions from livestock contribute significantly to global warming, and a reduction of this source of emissions is crucial in achieving the goal of mitigating global warming. 2. CO2 and CH4 emissions from dung pats were analysed by means of a mesocosm experiment in a Mediterranean ecosystem. The experiment consisted of a total of 30 mesocosms distributed across three treatments: a well-preserved, undisturbed dung beetle assemblage associated with organic livestock; a dung beetle assemblage that was impoverished as a result of the long-term use of veterinary medical products; and a control treatment without dung beetles. 3. Corrections related to insect respiration allow researchers to provide more precise measurements of CO2 emissions from dung, especially in the initial and final phases of dung exposure, when the percentage of CO2 emitted by dung beetles can become greater than the emissions from the dung pats themselves. 4. The effects of dung beetles on CO2 and CH4 emissions are much more accentuated in warm-temperate conditions than in northern temperate areas previously studied. Mediterranean assemblages remove and spread dung faster and more effectively than do northern dung beetle assemblages characterised by a lower functional richness and beetle abundance and biomass. 5. From a livestock management viewpoint, mesocosms representing areas with impoverished dung beetle assemblages, due to the long-term use of veterinary medical products, such as ivermectin, emitted 1.6- and 2.8-fold higher total CO2 and CH4, respectively, than mesocosms mimicking sites with untreated livestock.  相似文献   

16.
Following the treatment of cattle with veterinary parasiticides and insecticides, residues are excreted into the dung in concentrations that may be toxic to functionally important dung-colonizing insects. In the dung, these residues cause a range of well-studied lethal and sub-lethal effects, the magnitudes of which vary with the compound used, mode of administration and concentration, and the insect species in question. Particular concern has been associated with the use of macrocyclic lactones in this context. Loss of insect colonizers may delay pat decomposition, but field studies report contrasting results that reflect confounding factors such as weather conditions, pat moisture content, pat location, time of year and dung insect species phenologies. The question of fundamental concern is whether the impacts seen in experimental or laboratory studies are likely to have a functional impact on insect populations, community interactions and the economically important process of dung decomposition. Recent studies which have attempted to address these wider, landscape-level impacts in temperate ecosystems are reviewed here. These show that the extent to which chemical residues may have any sustained ecological impact will depend on both a range of farm management factors, such as the temporal and spatial patterns of chemical use, the number of animals treated and the choice of active ingredient, and a range of insect-related factors, such as abundance, population dynamics and dispersal rates. However, they also demonstrate that considerable uncertainty remains about the likely extent of such effects and that current data are insufficient to support firm conclusions regarding sustained pasture-level effects. More large-scale, longterm field experiments are required, particularly in relation to insect dispersal and functional interactions within the dung insect community.  相似文献   

17.
Dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) are very useful insects, as they improve the chemo-physical properties of soil, clean pastures from dung pads, and help control symbovine flies associated with bovine cattle. Their importance makes it fundamental to sample and survey them adequately. The objectives of the present study were to determine the influence of decaying insects trapped in pitfalls on the attractiveness of Moura pig Sus scrofa L. (Suidae) and collared peccary Tayassu tajacu (L.) (Tayassuidae) dung used as baits to lure dung beetles, and to establish how long these baits remain attractive to dung beetles when used in these traps. Some dung beetle species seemed to be able to discriminate against foul smell from decaying insects within the first 24 h, hence decreasing trap efficiency. This was more evident in peccary dung-baited traps, which proved to be the least attractive bait. Attractiveness lasted only 24 h for peccary dung, after which it became unattractive, whereas the pig dung bait was highly attractive for 48 h, after which its attractiveness diminished but was not completely lost.  相似文献   

18.
Abstract. Adults of the dung fly Neomyia cornicina (Fabricius) were fed continuously on either dung containing no ivermectin (control dung) or dung containing 0.125 μg g-1or 0.25 μ g-1ivermectin (wet weight).Comparisons were made between the behaviour of flies during the first 24 h of dung feeding and that observed after 96 h of feeding.Subsequent experiments investigated the effects of ivermectin ingestion on three measures of locomotory ability: escape time, time to re-right, and capture time.
Analysis of behavioural data showed a significant reduction in the activity of ivermectin-fed flies compared to that of the controls.After 96 h of feeding on dung containing ivermectin, there was a significant increase in the duration of time spent standing and a reduction in duration and frequency of walking and grooming behaviours compared to controls.
Seventy-two hours after the onset of dung feeding, flies fed dung containing ivermectin took significantly longer to escape from a glass tube and to re-right themselves after overturning than flies fed control dung.The time taken to capture flies that had fed on dung containing ivermectin at 0.25 μg g-1was significantly shorter than that required to catch control flies when flies from the different treatment groups were presented blind and randomly.  相似文献   

19.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

20.
Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号