首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutrition hypothesis for the adaptive significance of insect gall formation postulates that galls accumulate higher concentrations of nutritive compounds than uninfested plant tissue, resulting in a high performance of the gall former. This hypothesis has been supported by some taxa of gall insects, but not by taxa such as cynipid wasps. Aphid galls are expected to require higher levels of nitrogen than other insects’ galls with a single inhabitant, because aphid galls are required to sustain a number of aphids reproducing parthenogenetically over two generations. The present study tested this hypothesis by evaluating aphid performance and amino acid concentration in phloem sap, using the aphid Rhopalosiphum insertum (Walker) (Homoptera: Aphididae), which establishes colonies on leaves of Sorbus commixta Hedlund or in galls of the aphid Sorbaphis chaetosiphon Shaposhnikov (Homoptera: Aphididae). We prepared the gall and non‐gall treatments on trees of S. commixta, in which R. insertum fundatrices were reared and allowed to reproduce. In S. chaetosiphon galls, R. insertum colonies propagated more rapidly, and the second generation grew larger and more fecund than on ungalled leaves. The amount of amino acids exuding from cut galled leaves was fivefold that in ungalled leaves; however, there was no significant difference in the amino acid composition between galled and ungalled leaves. In the intact leaves, total amino acid concentration in the phloem sap declined rapidly from late April to late May; however, the galls retained this high amino acid concentration in developing leaves for 1 month. These results indicate that the improved performance in R. insertum is ascribed to the increased concentration of amino acids in galled leaves. We suggest that S. chaetosiphon galls function to promote the breakdown of leaf protein, leading to an increased performance of gall‐inhabiting aphids.  相似文献   

2.
Katherine C. Larson 《Oecologia》1998,115(1-2):161-166
The impact of herbivores on host plant photosynthetic rates can range from negative to positive. While defoliation by chewing herbivores can result in increases in photosynthesis followed by compensatory growth, other herbivore guilds, such as mesophyll feeders which damage photosynthetic leaf tissues, almost always reduce photosynthetic rates. The impact of galling herbivores on host photosynthesis has rarely been examined, even though the limited tissue disruption and the strong metabolic sinks induced by gall-forming herbivores could potentially stimulate photosynthetic rates. I examined the hypothesis that gall-inducing herbivores could stimulate photosynthesis in neighboring leaves in response to increased sink-demand by the gall. To address this hypothesis, I measured photosynthetic rates of galled leaves or leaflets, neighboring ungalled leaves or leaflets, and ungalled leaves or leaflets on ungalled shoots on naturally growing Prunus serotina (wild cherry) and Rhus glabra (smooth sumac). The leaves of wild cherry were galled by an eriophyid mite, Phytoptus cerasicrumena; the leaves of smooth sumac by an aphid, Melaphis rhois. I found that both species reduced the photosynthetic rates of the leaves or leaflets they galled from 24 to 52% compared to ungalled leaves in ungalled areas of the plants. Contrary to my hypothesis, mite galls on wild cherry reduced photosynthesis of neighboring ungalled leaves within the same shoot by 24% compared to ungalled leaves on gall-free shoots. Aphid galls on sumac leaflets did not significantly alter the photosynthetic rates of neighboring leaflets relative to ungalled leaves on ungalled shoots. Although gall-formers would appear to have the potential to stimulate photosynthesis in the same manner as defoliating herbivores, i.e., by increasing sink demand relative to source supply, I found only negative impacts on photosynthesis. I suggest that sink competition for nutrients between developing leaves and growing gall tissue may account for the negative impacts of sink-inducing gallers on photosynthesis. Received: 17 October 1997 / Accepted: 2 February 1998  相似文献   

3.
During the middle stage of old-field succession, genets of clonal plants vie to take over space from annual and short-lived perennial plants. We studied factors that may influence the relative rates of expansion of Solidago altissima genets in an old-field population attacked by the gall midge Rhopalomyia solidaginis. Genets growing in more clayey soil expanded more slowly, as evidenced by differences in rhizome growth. Edaphic conditions also affected galling frequencies, with genets in more sandy soil having twice as many galls. Gall midges reduced goldenrod stem growth, and stem height was positively correlated with rhizome growth. For a given stem height, galled ramets allocated relatively more biomass to rhizome growth than ungalled ramets. The end result was that galled ramets produced the same number and sizes of rhizomes as ungalled ramets.  相似文献   

4.
  • Gall inducers use these structures as shelters and sources of nutrition. Consequently, they cause multiple physiological changes in host plants.
  • We studied the impact caused by seed coat galls of a braconid wasp on the performance of fruits, seeds and seedlings of tree Inga laurina. We tested whether these seed galls are ‘nutrient sinks’ with respect to the fruit/seed of host plant, and so constrain the reproductive ability and reduce seedling longevity. We measured the influence of such galls on the secondary compounds, fruit and seed parameters, seed viability and germination and seedling performance.
  • Inga laurina has indehiscent legumes with polyembryonic seeds surrounded by a fleshy sarcotesta rich in sugars. The galls formed inside the seed coat and galled tissues presented higher phenol concentrations, around 7‐fold that of ungalled tissues. Galls caused a significant reduction in parameters such as fruit and seed size, seed weight and the number of embryos. Fluctuating asymmetry (a stress indicator) was 31% higher in leaves of galled seed plants in comparison to ungalled seed plants. However, the negative effects on fruit and seed parameters were not sufficient to reduce seed germination (except the synchronization index) or seedling performance (except leaf area and chlorophyll content).
  • We attributed these results to the ability of I. laurina to tolerate gall attack on seeds without a marked influence on seedling performance. Moreover, because of the intensity of seed galling on host plant, we suggest that polyembryony may play a role in I. laurina reproduction increasing tolerance to seed damage.
  相似文献   

5.
Alstonia scholaris (Dr C. Alston, 1685–1760) (Family Apocynaceae) (Chattim tree), commonly known as devil tree, is an evergreen tropical tree. The tree is native to India and also found in Sri Lanka, Southern China, throughout Malaysia to northern Australia. This plant is seriously damaged by formation of tumor like galls across the Kolkata city,West Bengal which affects its ornamental and medicinal value. Gall is formed by ovipositing adults of Pseudophacopteron alstonium Yang et Li 1983 (Hemiptera: Psyllidae: Phacopteronidae) and results in destruction of host plant. The nymphal stage undergoes moulting through first instar to third instar to reach the adult within galls. It is observed that highly infested leaves can bear 60–80 galls. The gallmaker Pseudophacopteron sp. stresses the host organ, and the host counters it with physiological activities supplemented by newly differentiated tissues. In infested leaves, chlorophyll and carbohydrate contents decreased sequentially with the age of the gall. There were no significant changes in protein and total amino acid content in gall tissue. But total lipid content was highest in mature galled leaves. Increased phenolic content after psylloid herbivory, which exerted oxidative stress on the host plants, was observed in gall infested leaves as compared to fresh ungalled leaves of Alstonia scholaris. Moisture content was highest in ungalled healthy leaves than the young galled, mature galled and perforated galled leaves.  相似文献   

6.
Herbivory may substantially alter the architectural structure of plants. Among insects, gall-formers that substantially manipulate host traits may have a profound effect on the plants even at low densities. The aphid, Baizongia pistaciae induces banana-like large galls on the terminal buds of Pistacia palaestina. We hypothesized that these large galls are associated with the shape of the plant which may grow as a tree or a bush. In the natural Mediterranean forest, we monitored the effects of the galls on infested branches. In the year of gall formation, usually (~95%) there is neither elongation nor branching beyond the position of the gall. However, in the following years, galled branches produced more lateral branches (branching) than ungalled branches. This effect persists for at least 2 years. Consequently, galled branches carried more leaves and tended to gain more biomass than ungalled branches. Galling did not affect fruit yield. We suggest that repeated galling by B. pistaciae may promote bush-like architecture in P. palaestina.  相似文献   

7.
1. The relationship between plant traits and the frequency of attack by a stem galling midge, Neolasioptera sp. (Diptera: Cecidomyiidae), on Eremanthus erythropappus (Asteraceae) was studied. The morphological changes of the host after a galler attack and the potential effects of these changes on attacks by the next generation of gallers were analysed. The study was conducted in the Serra do Japi, São Paulo, south-eastern Brazil. 2. Galled branches were significantly longer, thicker, and had more leaves than ungalled branches. Accordingly, gall establishment was higher in the longer and more foliose branches. Hence, it is suggested that ovipositing females are maximizing their performance by selecting larger branches. 3. Galled branches were larger than ungalled branches of the same age. Two hypotheses, not necessarily exclusive, can explain this pattern: (1) the plant vigour hypothesis that the females are choosing the more vigorous, fast-growing branches, which still remain more vigorous after galling; or (2) the resource regulation hypothesis that galling increases branch growth rates, thus increasing resource quality for forthcoming conspecifics. 4. Co-occurrence frequencies of current and past generation galls showed that the likelihood of a branch being galled increased when it, or the branch from which it stemmed, had been galled before. The data indicated that this preference was conditioned by the number of previous attacks. Heavier attack intensities, such as one gall in the same branch and another in the branch from which it stemmed, decreased the probability of further galling. 5. The suggested links between herbivore attack and plant traits indicate that studies on host selection by phytophagous insects must take into account that herbivory itself may change the plant traits that are postulated to be selected by the insects.  相似文献   

8.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   

9.
The sexual generation of a cynipid wasp, Andricus symbioticus Kovalev, forms its leaf galls most frequently near and on the leaf petiole of Quercus trees. I examined the effect of gall formation by A. symbioticus on the leaf development of a host plant, Quercus dentata Thunberg, by comparing the size and shape of galled and ungalled leaves. I also examined the effect of gall formation on shoot development by comparing the length of shoots with and without galled leaves. Three of seven Q. dentata trees surveyed were heavily infested with A. symbioticus. Leaf size did not differ between galled and ungalled leaves. However, the ratio of leaf width to length was greater in galled leaves, which is regarded to be a result of gall formation by A. symbioticus inhibiting the growth in length of Q. dentata leaves. Shoot length did not differ significantly between shoots with and without galled leaves. These results suggest that galls of A. symbioticus act as a sink that competes with leaves for reserved photoassimilates.  相似文献   

10.
The leaflet galling mite Floracarus perrepae Knihinicki & Boczek was released on Lygodium microphyllum (Cav.) in 63 plots in Florida from 2008 to 2009. Mites transferred onto field plants in 34 plots, but failed to establish populations in the majority of plots. Leaflet galls were observed in only six plots, and in only two plots did mite populations persist for >12 mo. Rates of mite transfer onto field plants were similar for methods using direct transfer of galls versus approaches using passive transfer of mites from infested plants. Often leaflets on some L. microphyllum plants were heavily galled by F. perrepae, whereas leaflets on intertwined stems of other L. microphyllum plants were ungalled but exhibited a characteristic browning and scorching of the leaflet tips. Living mites were consistently present on the undersurface of scorched leaflet tips on ungalled plants, suggesting that this damage might be caused by mite feeding on L. microphyllum genotypes that did not support induction of leaflet galls. Plant nutritional status did not account for differences in galling response, because there were no differences in leaflet nitrogen between galled and ungalled stems. We review those factors known to affect the colonization of biological control agents, and discuss how they may have contributed to the lower than expected rate of F. perrepae establishment.  相似文献   

11.
Interactions between drought, insect herbivory, photosynthesis, and water potential play a key role in determining how plants tolerate and defend against herbivory, yet the effects of insect herbivores on photosynthesis and water potential are seldom assessed. We present evidence that cynipid wasp galls formed by Antistrophus silphii on Silphium integrifolium increase photosynthesis (A), stomatal conductance (g), and xylem water potential (). Preliminary data showed that in drought-stressed plants galled shoots had 36% greater A, and 10% greater stem than ungalled shoots, while in well-watered plants leaf gas exchange was not affected by galls. We hypothesized that 1) galled shoots have higher , g, and A than ungalled shoots, but this differences diminishes if plant drought stress is reduced, and 2) galls can reduce decreases in A and g if water availability decreases. A field experiment testing the first hypothesis found that galls increased g and , but that differences between galled and ungalled shoots did not diminish after plants were heavily watered. A laboratory test of the second hypothesis using potted Silphium found that galled plants had smaller drops in A and g over a 4-day dry-down period. A vs g and A vs intercellular CO2 concentration relationships were consistent with the explanation that increased allows galls to increase A by reducing stomatal limitation of A, rather than by altering sink-source relationships or by removing low- limitations on non-stomatal components of A. Our working hypothesis is that galls increase and A by reducing the shoot: root ratio so that the plant is exploiting a greater soil volume per unit leaf area. We argue that increased A is an ineffective way for Silphium to compensate for negative effects of gall insect attack. Instead, increased and A may protect gall insects from variation in resource availability caused by periodic drought stress, potentially reducing negative effects of drought on plant quality and on gall insect populations.  相似文献   

12.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

13.
Insect herbivory can negatively or positively affect plant performance. We examined how a stem gall midge Rabdophaga rigidae affects the survival, growth, and bud production of current year shoots of the willow Salix eriocarpa. In mid-May, the gall midge initiates stem galls on the apical regions of shoots. The following spring, galled shoots had thicker basal diameters and more lateral shoots than ungalled shoots. Although galled shoots were on average 1.6 times longer than ungalled shoots, there were no significant differences in shoot length or in the numbers of reproductive, vegetative, and dormant buds per shoot. However, the subsequent survival of galled shoots was significantly higher than that of ungalled shoots, probably because of the thicker basal diameter. This increased shoot survival resulted in approximately two times greater reproductive, vegetative, and dormant bud production on galled shoots compared with ungalled shoots in the following spring. These results suggest that the willow regrowth induced by galling can lead to an increase in bud production through increased shoot survival.  相似文献   

14.
S. E. Hartley 《Oecologia》1998,113(4):492-501
The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen and higher levels of phenolic compounds than ungalled plant tissue. The gall tissue produced by the same plant in response to different species of gall-former differed in chemical composition, as did the gall-tissue from young and mature galls of the same species. The chemical differences between gall and plant tissues were studied in more detail in two field manipulations. Firstly, the seasonal changes in phenolic biosynthesis in Pontania proxima and P. pedunculi (Hymenoptera: Tenthredinidae) gall tissue were compared to those of their host plants, Salix alba and S. caprea. In both types of gall tissue, phenolic levels declined as the season progressed, but levels in the surrounding plant tissue increased. When the gall insects were killed with insecticide, phenolic levels in the galled tissue dropped to the same level as those in adjacent plant tissue. Secondly, the density of Cynips divisa (Hymenoptera: Cynipidae) galls on Quercus robur leaves was reduced by removing half the galls present, either those from the central region of the leaf or those from the edge. Decreasing gall density increased the size of the remaining galls and the weight of the insects, but these effects were most marked when the galls remaining were growing centrally on the leaf, i.e. when the galls from the edge had been removed. Decreasing gall density increased the nitrogen content of the remaining galls, again to a greater extent in galls growing centrally on the leaf. The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue. Received: 7 July 1997 / Accepted: 29 September 1997  相似文献   

15.
A basic question in insect–plant interactions is whether the insects respond to, or regulate plant traits, or a complex mixture of the two. The relative importance of the directions of the influence in insect–plant interactions has therefore been articulated through both the plant vigor hypothesis (PVH) and the resource regulation hypothesis (RRH). This study tested the applicability of these hypotheses in explaining the interactions between Parthenium hysterophorus L. (Asteraceae) and its stem‐galling moth, Epiblema strenuana Walker (Lepidoptera: Tortricidae). Parthenium plants exposed to galling were sampled at three sites in north Queensland, Australia, over a 2‐year period, and the relationship between gall abundance and plant vigor (plant height, biomass, flowers per plant, and branches per plant) was studied. To test the predictions of PVH and RRH, the vigor of parthenium plants protected from galling using insecticides was compared to galled plants and plants that escaped from galling. The vigor of ungalled plants was less than the vigor of galled plants. The higher plant vigor in galled plants was not due to galling, as was evident from insecticide exclusion trials. The insect seemed to preferentially gall the more vigorous plants. These findings support the predictions of the PVH and are contrary to those of RRH. Since gall abundance is linked to plant vigor, galling may have only a limited impact on the vigor of parthenium. This has implications for weed biological control. If the objective of biological control is to regulate the population of a plant by a galling insect, a preference for more vigorous plants by the insect is likely to limit its ability to regulate plant populations. This may explain the paucity of successes against biocontrol of annual weeds using gall insects.  相似文献   

16.
Plant–insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the rosette gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3–34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant–insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant–insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.  相似文献   

17.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   

18.
We examined the effects of the rhizome galling fly, Eurosta comma (Wiedemann), on rhizome mass and nitrogen allocation in a clone of its goldenrod host plant, Solidago missouriensis Nutt. In comparison to ungalled ramets, galled ramets initiated significantly fewer new rhizomes, and allocated less mass to leaves and stems and more to roots. Galled ramets had lower concentrations of nitrogen in roots and rhizomes but leaf and stem nitrogen concentrations were not affected. In the second year of our study, outbreaks of the leaf-eating beetle, Trirhabda canadensis (Kirby), occurred in three of our four study clones, removing ∼20%, ∼50%, and 100% of leaf area from clones 2–4, respectively. In the most heavily grazed clones, the influence of rhizome galls on plant resource allocation was least pronounced. Despite the overwhelming immediate impact of grazing, the presence of a gall population may be important because they decrease the ability of S. missouriensis clones to initiate new rhizomes and hence to recover from defoliation. Received: 28 December 1997 / Accepted: 28 December 1998  相似文献   

19.
The impact of gall-inducing aphids on shoot development was analyzed in 900 shoots from 20 pistachio trees, Pistacia atlantica Desf. (Anacardiaceae): 600 in which the axillary—lateral buds were galled by Slavum wertheimae HRL during the previous growth season, and 300 ungalled shoots. Although P. atlantica is a compensating tree, and the aphids do not attack the apical buds, further development of shoots from the apical buds was stopped in 62% of the galled shoots, while only 8.7% of nongalled shoots stopped their growth. Further development was stopped more often on shoots carrying two or more galls than on shoots supporting only one gall. To assess the hypothesis that bud destruction by the aphids explains this pattern, a field experiment was conducted in 140 shoots, distributed across seven trees. One, two or three axillary buds from five shoots of each tree were removed for each treatment, and five other shoots were marked as controls. Only 14 shoots (10%) of the 140 did not develop. The growth of the other shoots was not very different among the treatments. The colonization of the apical shoots, which developed on previously treated shoots, by three other galling aphid species was monitored. Removing lateral buds considerably reduced the establishment of Geoica sp. galls (70% of them colonized control shoots), but weakly influenced Forda riccobonii (Stefani). It also contributed only 5% of the total variance of the distribution of Smynthurodes betae West. The different results of the survey and the experiment show that the impact of S. wertheimae galls on the future growth of shoots from apical buds is more complex than the simple physical destruction of the axillary buds. Handling editor: Graham Stone  相似文献   

20.
Effects of gall damage by the introduced moth Epiblema strenuana on different growth stages of the weed Parthenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, leaf production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号