首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
Abstract The leaf galling eriophyid mite Floracarus perrepae is a widespread and damaging herbivore of Old World climbing fern, Lygodium microphyllum , across its native range in tropical and subtropical Asia and Australia; and was therefore selected as a candidate biological-control agent for the invasive fern in Florida, USA. The host testing of F. perrepae focused on Lygodium species from North America and the Neotropics, along with threatened or endangered ferns from Florida. Sporeling ferns were used for the initial no-choice screening and F. perrepae showed normal development on the Florida genotype of L. microphyllum with 33.0 ± 4.6 mites per marginal leaf roll gall, modest development on the North American native Lygodium palmatum with 29.0 ± 9.3 mites per roll, and minor development on six other fern species (4.0–0.3). Leaf rolls were induced only on Lygodium species and full rolls were common only on L. microphyllum . These same six non-target plant species were tested again as more mature plants in both no-choice and choice tests and F. perrepae developed only on L. microphyllum . Lethal minimum temperature and cold stress tests were also conducted on F. perrepae . These tests revealed that it would not likely establish north of USDA hardiness zone 8a (−9.5 to −12.2°C), which means it would not overlap with L. palmatum from temperate North America. Our studies conclude that F. perrepae is specific to L. microphyllum , poses little or no risk to native or cultivated ferns in North and South America, and therefore should be considered for release in Florida.  相似文献   

2.
Katherine C. Larson 《Oecologia》1998,115(1-2):161-166
The impact of herbivores on host plant photosynthetic rates can range from negative to positive. While defoliation by chewing herbivores can result in increases in photosynthesis followed by compensatory growth, other herbivore guilds, such as mesophyll feeders which damage photosynthetic leaf tissues, almost always reduce photosynthetic rates. The impact of galling herbivores on host photosynthesis has rarely been examined, even though the limited tissue disruption and the strong metabolic sinks induced by gall-forming herbivores could potentially stimulate photosynthetic rates. I examined the hypothesis that gall-inducing herbivores could stimulate photosynthesis in neighboring leaves in response to increased sink-demand by the gall. To address this hypothesis, I measured photosynthetic rates of galled leaves or leaflets, neighboring ungalled leaves or leaflets, and ungalled leaves or leaflets on ungalled shoots on naturally growing Prunus serotina (wild cherry) and Rhus glabra (smooth sumac). The leaves of wild cherry were galled by an eriophyid mite, Phytoptus cerasicrumena; the leaves of smooth sumac by an aphid, Melaphis rhois. I found that both species reduced the photosynthetic rates of the leaves or leaflets they galled from 24 to 52% compared to ungalled leaves in ungalled areas of the plants. Contrary to my hypothesis, mite galls on wild cherry reduced photosynthesis of neighboring ungalled leaves within the same shoot by 24% compared to ungalled leaves on gall-free shoots. Aphid galls on sumac leaflets did not significantly alter the photosynthetic rates of neighboring leaflets relative to ungalled leaves on ungalled shoots. Although gall-formers would appear to have the potential to stimulate photosynthesis in the same manner as defoliating herbivores, i.e., by increasing sink demand relative to source supply, I found only negative impacts on photosynthesis. I suggest that sink competition for nutrients between developing leaves and growing gall tissue may account for the negative impacts of sink-inducing gallers on photosynthesis. Received: 17 October 1997 / Accepted: 2 February 1998  相似文献   

3.
Effects of gall damage by the introduced moth Epiblema strenuana on different growth stages of the weed Parthenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, leaf production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.  相似文献   

4.
1. Insect galls are abnormal plant growths that develop in response to a stimulus provided by a galling insect. The nutrition hypothesis suggests that the concentrations of nutritive compounds in galls are changed to provide optimum nutrition for the larvae and adults of galling insects. 2. To test the nutrition hypothesis, we determined the concentrations of 20 free amino acids in galls and in galled and ungalled twigs of Quercus fabri during the larval and adult stages of Andricus mukaigawae using high-performance liquid chromatography with ultraviolet–visible detection. 3. At the larval stage, the concentrations of 12 out of 20 amino acids in A. mukaigawae galls were significantly higher than those in galled and ungalled twigs. Asparagine and tryptophan were the most abundant nonessential and essential amino acids, respectively, in A. mukaigawae galls. 4. At the adult stage, the concentrations of most amino acids, except proline, were significantly lower in A. mukaigawae galls than in galled and ungalled twigs. The A. mukaigawae adults may not manipulate amino acid levels because the adults do not feed on galls. The decrease of amino acid levels in adult galls may be viewed as a depletion. 5. The composition of free amino acids in A. mukaigawae galls was significantly different from the composition in galled and ungalled twigs in both the larval and adult stages. 6. Our results may support the nutrition hypothesis. We suggest that a high concentration of proline in A. mukaigawae galls may protect larvae and adults from plant defense responses.  相似文献   

5.
During the middle stage of old-field succession, genets of clonal plants vie to take over space from annual and short-lived perennial plants. We studied factors that may influence the relative rates of expansion of Solidago altissima genets in an old-field population attacked by the gall midge Rhopalomyia solidaginis. Genets growing in more clayey soil expanded more slowly, as evidenced by differences in rhizome growth. Edaphic conditions also affected galling frequencies, with genets in more sandy soil having twice as many galls. Gall midges reduced goldenrod stem growth, and stem height was positively correlated with rhizome growth. For a given stem height, galled ramets allocated relatively more biomass to rhizome growth than ungalled ramets. The end result was that galled ramets produced the same number and sizes of rhizomes as ungalled ramets.  相似文献   

6.
Insect herbivory can negatively or positively affect plant performance. We examined how a stem gall midge Rabdophaga rigidae affects the survival, growth, and bud production of current year shoots of the willow Salix eriocarpa. In mid-May, the gall midge initiates stem galls on the apical regions of shoots. The following spring, galled shoots had thicker basal diameters and more lateral shoots than ungalled shoots. Although galled shoots were on average 1.6 times longer than ungalled shoots, there were no significant differences in shoot length or in the numbers of reproductive, vegetative, and dormant buds per shoot. However, the subsequent survival of galled shoots was significantly higher than that of ungalled shoots, probably because of the thicker basal diameter. This increased shoot survival resulted in approximately two times greater reproductive, vegetative, and dormant bud production on galled shoots compared with ungalled shoots in the following spring. These results suggest that the willow regrowth induced by galling can lead to an increase in bud production through increased shoot survival.  相似文献   

7.
Herbivory may substantially alter the architectural structure of plants. Among insects, gall-formers that substantially manipulate host traits may have a profound effect on the plants even at low densities. The aphid, Baizongia pistaciae induces banana-like large galls on the terminal buds of Pistacia palaestina. We hypothesized that these large galls are associated with the shape of the plant which may grow as a tree or a bush. In the natural Mediterranean forest, we monitored the effects of the galls on infested branches. In the year of gall formation, usually (~95%) there is neither elongation nor branching beyond the position of the gall. However, in the following years, galled branches produced more lateral branches (branching) than ungalled branches. This effect persists for at least 2 years. Consequently, galled branches carried more leaves and tended to gain more biomass than ungalled branches. Galling did not affect fruit yield. We suggest that repeated galling by B. pistaciae may promote bush-like architecture in P. palaestina.  相似文献   

8.
Patankar R  Thomas SC  Smith SM 《Oecologia》2011,167(3):701-709
Mature forest canopies sustain an enormous diversity of herbivorous arthropods; however, with the exception of species that exhibit large-scale outbreaks, canopy arthropods are thought to have relatively little influence on overall forest productivity. Diminutive gall-inducing mites (Acari; Eriophyoidae) are ubiquitous in forest canopies and are almost always highly host specific, but despite their pervasive occurrence, the impacts of these obligate parasites on canopy physiology have not been examined. We have documented large declines in photosynthetic capacity (approx. 60%) and stomatal conductance (approx. 50%) in canopy leaves of mature sugar maple (Acer saccharum) trees frequently galled by the maple spindle gall mite Vasates aceriscrumena. Remarkably, such large impacts occurred at very low levels of galling, with the presence of only a few galls (occupying approx. 1% of leaf area) compromising gas-exchange across the entire leaf. In contrast to these extreme impacts on the leaves of adult trees, galls had no detectible effect on the gas-exchange of maple saplings, implying large ontogenetic differences in host tolerance to mite galling. We also found a significant negative correlation between canopy tree radial increment growth and levels of mite galling. Increased galling levels and higher physiological susceptibility in older canopy trees thus suggest that gall-inducing mites may be major drivers of “age-dependent” reductions in the physiological performance and growth of older trees.  相似文献   

9.
Ribosomal DNA from Cecidophyopsis mites from different Ribes species was amplified using the polymerase chain reaction and the products digested using restriction enzymes. After separating the DNA fragments on gels, it was possible to identify specimens of mites obtained from field samples by comparing the profiles of their DNA banding patterns with those of known Cecidophyopsis species. Using this analysis, a non-gall forming mite found infesting blackcurrant buds in New Zealand was identified as the gooseberry mite (C. grossulariae). On wild red currant (Ribes spicatum) from Finland showing two sizes of galled buds, the red currant gall mite (C. selachodon) was identified in the larger galls located at the tips of branches and a distinct mite in the smaller galls located on the lower parts of the branches. A mite with a DNA banding profile indistinguishable from this latter mite from R. spicatum was also identified in galled buds of blackcurrant genotypes growing in Finland, including those containing the blackcurrant gall mite (C. n'ftw)-resistance genes P or Ce. The DNA banding profile of this mite resembled most closely that of C. ribis , but was distinct from it. The occurrence of C. grossulariae and this distinct Cecidophyopsis mite on blackcurrant has implications for the genetic control of Cecidophyopsis mites and possibly for the spread of the reversion disease agent in this crop.  相似文献   

10.
A basic question in insect–plant interactions is whether the insects respond to, or regulate plant traits, or a complex mixture of the two. The relative importance of the directions of the influence in insect–plant interactions has therefore been articulated through both the plant vigor hypothesis (PVH) and the resource regulation hypothesis (RRH). This study tested the applicability of these hypotheses in explaining the interactions between Parthenium hysterophorus L. (Asteraceae) and its stem‐galling moth, Epiblema strenuana Walker (Lepidoptera: Tortricidae). Parthenium plants exposed to galling were sampled at three sites in north Queensland, Australia, over a 2‐year period, and the relationship between gall abundance and plant vigor (plant height, biomass, flowers per plant, and branches per plant) was studied. To test the predictions of PVH and RRH, the vigor of parthenium plants protected from galling using insecticides was compared to galled plants and plants that escaped from galling. The vigor of ungalled plants was less than the vigor of galled plants. The higher plant vigor in galled plants was not due to galling, as was evident from insecticide exclusion trials. The insect seemed to preferentially gall the more vigorous plants. These findings support the predictions of the PVH and are contrary to those of RRH. Since gall abundance is linked to plant vigor, galling may have only a limited impact on the vigor of parthenium. This has implications for weed biological control. If the objective of biological control is to regulate the population of a plant by a galling insect, a preference for more vigorous plants by the insect is likely to limit its ability to regulate plant populations. This may explain the paucity of successes against biocontrol of annual weeds using gall insects.  相似文献   

11.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

12.
Abstract  The ultrastructure of the mite Floracarus perrepae was investigated in relation to its host, Lygodium microphyllum , the Old World climbing fern. Floracarus perrepae has been suggested as a means of biological control for the fern, which is an aggressive weed in tropical areas. Feeding by the mite induces a change in the size of epidermal cells, and cell division is stimulated by mite feeding, causing the leaf margin to curl over into a roll with two to three windings. The enlarged epidermal layer greatly increases its cytoplasmic contents, which become a nutritive tissue for the mite and its progeny. Damage by the mite ultimately debilitates the fern. The structure and depth of stylet penetration by the mite, and the thickness of the epidermal cell wall of L. microphyllum , do not appear to account for the mite's differential ability to induce leaf rolling in its co-adapted host from south-east Queensland but not in the invasive genotype of the fern in Florida.  相似文献   

13.
  • Gall inducers use these structures as shelters and sources of nutrition. Consequently, they cause multiple physiological changes in host plants.
  • We studied the impact caused by seed coat galls of a braconid wasp on the performance of fruits, seeds and seedlings of tree Inga laurina. We tested whether these seed galls are ‘nutrient sinks’ with respect to the fruit/seed of host plant, and so constrain the reproductive ability and reduce seedling longevity. We measured the influence of such galls on the secondary compounds, fruit and seed parameters, seed viability and germination and seedling performance.
  • Inga laurina has indehiscent legumes with polyembryonic seeds surrounded by a fleshy sarcotesta rich in sugars. The galls formed inside the seed coat and galled tissues presented higher phenol concentrations, around 7‐fold that of ungalled tissues. Galls caused a significant reduction in parameters such as fruit and seed size, seed weight and the number of embryos. Fluctuating asymmetry (a stress indicator) was 31% higher in leaves of galled seed plants in comparison to ungalled seed plants. However, the negative effects on fruit and seed parameters were not sufficient to reduce seed germination (except the synchronization index) or seedling performance (except leaf area and chlorophyll content).
  • We attributed these results to the ability of I. laurina to tolerate gall attack on seeds without a marked influence on seedling performance. Moreover, because of the intensity of seed galling on host plant, we suggest that polyembryony may play a role in I. laurina reproduction increasing tolerance to seed damage.
  相似文献   

14.
S. E. Hartley 《Oecologia》1998,113(4):492-501
The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen and higher levels of phenolic compounds than ungalled plant tissue. The gall tissue produced by the same plant in response to different species of gall-former differed in chemical composition, as did the gall-tissue from young and mature galls of the same species. The chemical differences between gall and plant tissues were studied in more detail in two field manipulations. Firstly, the seasonal changes in phenolic biosynthesis in Pontania proxima and P. pedunculi (Hymenoptera: Tenthredinidae) gall tissue were compared to those of their host plants, Salix alba and S. caprea. In both types of gall tissue, phenolic levels declined as the season progressed, but levels in the surrounding plant tissue increased. When the gall insects were killed with insecticide, phenolic levels in the galled tissue dropped to the same level as those in adjacent plant tissue. Secondly, the density of Cynips divisa (Hymenoptera: Cynipidae) galls on Quercus robur leaves was reduced by removing half the galls present, either those from the central region of the leaf or those from the edge. Decreasing gall density increased the size of the remaining galls and the weight of the insects, but these effects were most marked when the galls remaining were growing centrally on the leaf, i.e. when the galls from the edge had been removed. Decreasing gall density increased the nitrogen content of the remaining galls, again to a greater extent in galls growing centrally on the leaf. The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue. Received: 7 July 1997 / Accepted: 29 September 1997  相似文献   

15.
The Florida Everglades have been invaded by an exotic weed fern, Lygodium microphyllum. Across its native distribution in the Old World tropics from Africa to Australasia it was found to have multiple location-specific haplotypes. Within this distribution, the climbing fern is attacked by a phytophagous mite, Floracarus perrepae, also with multiple haplotypes. The genetic relationship between mite and fern haplotypes was matched by an overarching geographical relationship between the two. Further, mites that occur in the same location as a particular fern haplotype were better able to utilize the fern than mites from more distant locations. From a biological control context, we are able to show that the weed fern in the Everglades most likely originated in northern Queensland, Australia/Papua New Guinea and that the mite from northern Queensland offers the greatest prospect for control.  相似文献   

16.
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.  相似文献   

17.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   

18.
Interactions between drought, insect herbivory, photosynthesis, and water potential play a key role in determining how plants tolerate and defend against herbivory, yet the effects of insect herbivores on photosynthesis and water potential are seldom assessed. We present evidence that cynipid wasp galls formed by Antistrophus silphii on Silphium integrifolium increase photosynthesis (A), stomatal conductance (g), and xylem water potential (). Preliminary data showed that in drought-stressed plants galled shoots had 36% greater A, and 10% greater stem than ungalled shoots, while in well-watered plants leaf gas exchange was not affected by galls. We hypothesized that 1) galled shoots have higher , g, and A than ungalled shoots, but this differences diminishes if plant drought stress is reduced, and 2) galls can reduce decreases in A and g if water availability decreases. A field experiment testing the first hypothesis found that galls increased g and , but that differences between galled and ungalled shoots did not diminish after plants were heavily watered. A laboratory test of the second hypothesis using potted Silphium found that galled plants had smaller drops in A and g over a 4-day dry-down period. A vs g and A vs intercellular CO2 concentration relationships were consistent with the explanation that increased allows galls to increase A by reducing stomatal limitation of A, rather than by altering sink-source relationships or by removing low- limitations on non-stomatal components of A. Our working hypothesis is that galls increase and A by reducing the shoot: root ratio so that the plant is exploiting a greater soil volume per unit leaf area. We argue that increased A is an ineffective way for Silphium to compensate for negative effects of gall insect attack. Instead, increased and A may protect gall insects from variation in resource availability caused by periodic drought stress, potentially reducing negative effects of drought on plant quality and on gall insect populations.  相似文献   

19.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

20.
Meloidogyne hapla-resistant plants grown from cuttings and inoculated with M. hapla larvae were free of galls. However, 35 to 48% of the seedling intercross progeny of resistant genotypes that were inoculated in the germinated seed stage were galled. There was an inverse relationship between the age of plants grown from seed and the percentage of plants galled by M. hapla; the older the plants at inoculation, the greater the percentage of gall-free plants. The per cent of galled plants was significantly reduced when galled roots were removed and plants reinoculated. Reproduction of M. hapla on galled progeny of resistant plants was significantly less than that on susceptible plants. There were no differences in nematode reproduction on galled progeny of resistant plants, regardless of age at time of inoculation. An in,ease in inoculum levels from 100 to 10,000 M. hapla larvae did not affect resistance or susceptility. There was a direct correlation between galling of inoculated seedlings of resistant progeny and temperature; inoculated 8-week-old cuttings of resistant plants were galled only at 32 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号