首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
  1. Disturbance cues are released by stressed or disturbed prey prior to a predator attack and convey useful risk assessment information regarding local threats. While studies have shown that disturbance cues may be important early on within the predation sequence (prior to an attack), their role in predator–prey interactions remains relatively overlooked by ecologists. Critically, experimental studies examining disturbance cues, especially among prey fishes, have been conducted primarily under laboratory or semi-natural conditions.
  2. Here, we tested the prediction that disturbance cues function as sources of risk assessment information in situ. We exposed Trinidadian guppies, in two natural populations differing in predation risk, to a model predator paired with stream water or the disturbance cue collected from guppies from either a high- or low-predation risk population.
  3. We found that the predator inspection response of guppies to disturbance cues depends on the level of risk of both the focal and the cue source population. Guppies from both populations exhibited increased latencies to inspect, lower inspection rates and reduced inspecting group sizes towards the model paired with conspecific disturbance cues versus a stream water control. Interestingly, guppies of both populations showed evidence of higher perceived predation risk towards the disturbance cues collected from high-predation risk donors compared to low-predation risk donors.
  4. Our results support the hypothesis that disturbance cues function as a source of information used by prey fish in the assessment of predation risk and provide the first evidence of disturbance cue function under fully natural conditions.
  相似文献   

2.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

3.
  1. Increased turbidity and siltation caused by rock quarrying, mining, and deforestation are pervasive disturbances in aquatic systems. Turbidity interferes with vision for aquatic organisms, potentially altering predator–prey interactions.
  2. We studied the effects of these disturbances in Trinidadian streams by surveying predators and their shared prey both in streams with versus without quarries as well as in a focal stream before and after the establishment of a quarry. Then, to evaluate whether differential foraging success in turbid water might underlie abundance patterns of predators, we experimentally induced turbidity in mesocosms and measured predator foraging success.
  3. Upstream quarry presence had a dramatic effect on the benthic structure of streams, greatly increasing siltation. A substantial decrease in the abundance of a diurnal cichlid predator (Crenicichla frenata) was associated with quarry presence, while a nocturnal erytherinid predator (Hoplias malabaricus) was equally as abundant in streams with or without quarries. The density of their shared prey, the Trinidadian guppy (Poecilia reticulata) remained unchanged.
  4. In mesocosm trials, Crenicichla were less successful predators with turbidity, whereas Hoplias performed equally across turbidities. These foraging success results help explain differences in demographic shifts in response to turbidity for both predators.
  5. By relating short-term effects of an anthropogenically altered visual environment on species interactions to abundance patterns of predators and prey, this study helps to identify an important mechanism whereby changes to species’ visual ecology may have long-term effects on population biology.
  相似文献   

4.
5.
  1. While detrimental effects of invasive predators on native species are well documented, we often lack a mechanistic understanding of the invasion success. Lack of prey avoidance behaviour can lead to higher consumption rates by invasive predators compared to native predators. This competitive advantage is expected to contribute to the invasion success of non‐native predators.
  2. We compared aphid consumption and cue avoidance behaviour of aphids between four native ladybird species (Coccinella septempunctata, Adalia bipunctata, Propylea quatuordecimpunctata, and Hippodamia variegata) and the invasive Asian ladybird Harmonia axyridis.
  3. The invasive H. axyridis and the native C. septempunctata consumed more aphids than the three smaller native ladybird species. In line with our expectations, aphids avoided leaves bearing cues of most native ladybird species but not of the invasive H. axyridis.
  4. Our results indicate that body size rather than ladybird origin determined aphid predation rates. The lack of aphid avoidance behaviour towards cues of H. axyridis indicates that they were not able to recognise the chemical cues of the invasive predator.
  5. Relatively large body size and the absence of cue avoidance in aphids might benefit the invasive H. axyridis, particularly in comparison to smaller native ladybird species. The absence of avoidance behaviour in aphids might lead to even higher predation rates of H. axyridis under more natural conditions.
  相似文献   

6.
Abstract 1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response to different pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic variation in the response to prey pheromones by two bark beetle predators, Thanasimus dubius and Temnochila virescens. The experiments used pheromones for several Dendroctonus and Ips prey species (frontalin, ipsdienol, and ipsenol) and manipulated visual cues involved in prey location (black vs. white traps). The study sites included regions where the frontalin‐emitter Dendroctonus frontalis was in outbreak vs. endemic or absent. 3. There was significant geographic variation in pheromone preference for T. dubius. This predator strongly preferred a pheromone (frontalin) associated with D. frontalis at outbreak sites, while preference was more even at endemic and absent sites. No geographic variation was found in the response by T. virescens. White traps caught fewer insects than black traps for both predators, suggesting that visual cues are also important in prey location. 4. The overall pattern for T. dubius is consistent with switching or optimal foraging theory, assuming D. frontalis is a higher quality prey than Ips. The two predator species partition the prey pheromones in areas where D. frontalis is abundant, possibly to minimise competition and intraguild predation.  相似文献   

7.
When individuals of the crayfish Orconectes virilis detect an unlearned danger cue (alarm odor) and a novel cue (goldfish odor) at the same time, they form a learned association and behave as if the novel cue is associated with increased predation risk ( Hazlett et al. 2002 ). This study examined the potential for learned irrelevance in O. virilis and the circumstances under which blockage of the formation of a learned association could occur. If individuals experience a random pattern of alarm odor and goldfish odor over the days prior to the simultaneous detection of those two cues, no learned association is formed (= learned irrelevance). That is, there is no inhibition of responses to a food cue when goldfish odor is added if the crayfish has experienced a random pattern of the two cues. Learning was eliminated if the random pattern of cues was experienced before or after the simultaneous detection. To present the two cues (alarm and goldfish odors) to crayfish independently on separate days, the water containing goldfish odor had to be removed from the aquaria as the odor persisted at least 24 h. The importance of the learned irrelevance phenomenon on predator–prey interactions is discussed.  相似文献   

8.
Habitat manipulation in agroecosystems can influence predator–prey interactions. In this study, we collected foliar predators from field potato plots with different mulch treatments and assayed them for DNA of the target prey, Leptinotarsa decemlineata (Say), using species-specific primers. Concurrently, L. decemlineata larval abundance and plant damage were recorded from the same plots. Predator species abundance and diversity were not influenced by habitat manipulation, while prey density was highest in plots without mulch. Gut-content analysis revealed that the highest incidence of predators positive for L. decemlineata DNA was in plots without mulch, where target prey abundance was highest. Therefore, the lower prey abundance in mulched plots was not due to predation. The most abundant species in the predator assemblage was Coleomegilla maculata, which had the lowest proportion of L. decemlineata DNA in the gut. Podisus maculiventris, Perillus bioculatus, and Lebia grandis were less abundant but had a higher incidence of target prey DNA in the gut. DNA detectability half-lives were used to adjust for inter-specific variation in DNA digestive rates of the four predator species. Using this information to adjust actual number of positives for prey DNA, we compared proportions positive for L. decemlineata and found that P. maculiventris is the most effective predator species in the complex.  相似文献   

9.
10.
This study tests the hypothesis that the generalist predator Coleomegilla maculata DeGeer causes differential mortality of Colorado potato beetle, Leptinotarsa decemlineata (Say), larvae differing in their degree of genetic adaptation to tomato (Lycopersicon esculentum Mill.) as a host plant. Results of a series of laboratory experiments demonstrate that adult C. maculata can cause higher mortality to nonadapted than adapted Colorado potato beetle larvae. The extent of differential mortality caused by C. maculata depended on age of potato beetle larvae; presence of potato beetle eggs; whether or not the predator had a choice among prey items; and, in choice situations, the ratio of adapted to nonadapted potato beetle larvae. Although adult C. maculata have the potential to prey differentially on tomato-adapted and nonadapted Colorado potato beetle larvae in mixed populations, the magnitude of differential predation in a natural setting could be highly variable.  相似文献   

11.
The pentatomid predator P. bioculatus responded by positive odour-conditioned anemotaxis when exposed to airborne volatiles emitted by potato plants damaged by Colorado potato beetle larvae, whereas intact potato plants and non-feeding larvae as odour sources failed to elicit anemotaxis. Walking tracks of adult predators had higher values of straightness and upwind fixation when odours emanating from mechanically damaged plants were encountered than tracks registered in response to air carrying volatiles from intact plants, but these parameters returned to control values within 1–2 h after damage was caused. In contrast, air led over plants damaged by beetle larvae elicited orientation responses at least 3 hours after feeding damage ceased. The combination of chemical data on headspace composition, olfactory sensitivity established in electro-antennogram studies and behavioural data presented here imply a role of sesquiterpenoid plant volatiles as odorous cues eliciting attraction of this predator to damaged potato plants.  相似文献   

12.
Using semi‐natural enclosures, this study investigated (1) whether adult sea lamprey Petromyzon marinus show avoidance of damage‐released conspecific cues, damage‐released heterospecific cues and predator cues and (2) whether this is a general response to injured heterospecific fishes or a specific response to injured P. marinus. Ten replicate groups of 10 adult P. marinus, separated by sex, were exposed to one of the following nine stimuli: deionized water (control), extracts prepared from adult P. marinus, decayed adult P. marinus (conspecific stimuli), sympatric white sucker Catostomus commersonii, Amazon sailfin catfish Pterygoplichthys pardalis (heterospecific stimuli), 2‐phenylethylamine (PEA HCl) solution, northern water snake Nerodia sipedon washing, human saliva (predator cues) and an adult P. marinus extract and human saliva combination (a damage‐released conspecific cue and a predator cue). Adult P. marinus showed a significant avoidance response to the adult P. marinus extract as well as to C. commersonii, human saliva, PEA and the adult P. marinus extract and human saliva combination. For mobile P. marinus, the N. sipedon washing induced behaviour consistent with predator inspection. Exposure to the P. pardalis extract did not induce a significant avoidance response during the stimulus release period. Mobile adult female P. marinus showed a stronger avoidance behaviour than mobile adult male P. marinus in response to the adult P. marinus extract and the adult P. marinus extract and human saliva combination. The findings support the continued investigation of natural damage‐released alarm cue and predator‐based repellents for the behavioural manipulation of P. marinus populations in the Laurentian Great Lakes.  相似文献   

13.
14.
  1. Variation in predator diet is a critical aspect of food web stability, health, and population dynamics of predator/ prey communities. Quantifying diet, particularly among cryptic species, is extremely challenging, however, and differentiation between demographic subsets of populations is often overlooked.
  2. We used prey remains and data taken postmortem from otter Lutra lutra to determine the extent to which dietary variation in a top predator was associated with biotic, spatial, and temporal factors.
  3. Biotic data (e.g., sex, weight, and length) and stomach contents were taken from 610 otters found dead across England and Wales between 1994 and 2010. Prey remains were identified to species where possible, using published keys and reference materials. Multi‐model inference followed by model prediction was applied to test for and visualize the nature of associations.
  4. Evidence for widespread decline in the consumption of eels (Anguilla anguilla) reflected known eel population declines. An association between eel consumption and otter body condition suggested negative consequences for otter nutrition. Consumption of Cottus gobio and stickleback spp. increased, but was unlikely to compensate (there was no association with body condition). More otters with empty stomachs were found over time. Otter sex, body length, and age‐class were important biotic predictors of the prey species found, and season, region, and distance from the coast were important abiotic predictors.
  5. Our study is unique in its multivariate nature, broad spatial scale, and long‐term dataset. Inclusion of biotic data allowed us to reveal important differences in costs and benefits of different prey types, and differences between demographic subsets of the population, overlaid on spatial and temporal variation. Such complexities in otter diet are likely to be paralleled in other predators, and detailed characterization of diet should not be overlooked in efforts to conserve wild populations.
  相似文献   

15.
16.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   

17.
18.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

19.
The influence of prey choice on the predation of a target prey item by a polyphagous insect predator was investigated in field plot studies. The target prey consisted of eggs of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and the predator was the 12‐spotted ladybeetle, Coleomegilla maculata Lengi (Coleoptera: Coccinellidae). Eggs of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae), and nymphs and adults of the green peach aphid, Myzus persicae Sulzer (Homoptera: Aphididae), comprised the alternative prey choices. The objectives of these studies were to: (1) examine predation in a multiprey scenario likely to occur in an agroecosystem, and (2) use the data to simulate the impact of predator‐induced mortality on the evolution of resistance to Bt‐transgenic plants in the target herbivore. Simulations of the rate of resistance evolution were carried out using a deterministic genetic model. Experiments were performed using potato field plots planted in a manner reflecting a 25% or 50% non‐transgenic refuge. CPB eggs were infested so as to mimic the densities of resistant and susceptible populations that might occur in commercial Bt‐transgenic plantings. Densities of predators and alternate prey species were chosen to represent those that might typically occur in potato crops in the eastern USA. Simulation results indicated that when ECB eggs were present, predation on CPB eggs either became inversely spatially density‐dependent, or increased significantly in a density‐dependent manner. When aphids were present, predation became positively density‐dependent. Model simulations predicted that ECB egg presence is beneficial, in that resistance was delayed by up to 40 pest generations (as compared to the scenario with CPB as the only prey), while aphid presence accelerated resistance evolution by 18 generations. Results suggest that resistance management strategies should take into account the composition of prey species available to generalist predators typically present, so as to best delay pest adaptation to Bt‐toxins.  相似文献   

20.
The ability to accurately assess local predation risk is criticalto prey individuals, as it allows them to maximize threat-sensitivetrade-offs between predator avoidance and other fitness relatedactivities. A wide range of taxonomically diverse prey (includingmany freshwater fishes) relies on chemical alarm cues (alarmpheromones) as their primary information source for local riskassessment. However, the value of chemical alarm cues has beenquestioned due to the availability of additional sensory inputs(i.e., visual cues) and the lack of an overt antipredator responseunder conditions of low perceived risk. In this paper, we testthe hypothesis that chemical alarm cues at concentrations belowthe point at which they elicit an overt behavioral responsefunction to increase vigilance towards other sensory modalities(i.e., visual alarm cues). Shoals of glowlight tetras (Hemigrammuserythrozonus) exposed to the subthreshold concentration of hypoxanthine-3-N-oxide(the putative Ostariophysan alarm pheromone) did not exhibitan overt antipredator response in the absence of secondary visualcues (not different than the distilled water control). However,when exposed to the sight of a visually alarmed conspecific,they significantly increased the intensity of their antipredatorresponse (not different from shoals exposed to the suprathresholdalarm cue). This study demonstrates that prey may benefit fromresponding to low concentration alarm cues by increasing vigilancetowards secondary cues during local risk assessment, even inthe absence of an overt behavioral response. By increasing vigilancetowards secondary risk assessment cues in the presence of alow risk chemical cue, individuals are likely able to maximizethe threat-sensitive trade-offs between predator avoidance andother fitness related activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号